esm_interact / README.md
AmelieSchreiber's picture
Update README.md
cb23dcb
|
raw
history blame
4.05 kB
metadata
license: mit
datasets:
  - AmelieSchreiber/interaction_pairs
language:
  - en
library_name: transformers
tags:
  - ESM-2
  - biology
  - protein language model

ESM-2 for Interacting Proteins

This model was finetuned on concatenated pairs of interacting proteins in much the same way as PepMLM. It is meant to generate interaction partners for proteins using the masked language modeling capabilities of ESM-2. The model is not well tested, so use with caution. This is just a preliminary experiment.

Using the Model

To use the model, try running:

from transformers import AutoTokenizer, EsmForMaskedLM  
import torch
import pandas as pd
import numpy as np
from torch.distributions import Categorical

def compute_pseudo_perplexity(model, tokenizer, protein_seq, binder_seq):
    sequence = protein_seq + binder_seq
    tensor_input = tokenizer.encode(sequence, return_tensors='pt').to(model.device)

    # Create a mask for the binder sequence
    binder_mask = torch.zeros(tensor_input.shape).to(model.device)
    binder_mask[0, -len(binder_seq)-1:-1] = 1

    # Mask the binder sequence in the input and create labels
    masked_input = tensor_input.clone().masked_fill_(binder_mask.bool(), tokenizer.mask_token_id)
    labels = tensor_input.clone().masked_fill_(~binder_mask.bool(), -100)

    with torch.no_grad():
        loss = model(masked_input, labels=labels).loss
    return np.exp(loss.item())


def generate_peptide_for_single_sequence(protein_seq, peptide_length = 15, top_k = 3, num_binders = 4):

    peptide_length = int(peptide_length)
    top_k = int(top_k)
    num_binders = int(num_binders)

    binders_with_ppl = []

    for _ in range(num_binders):
        # Generate binder
        masked_peptide = '<mask>' * peptide_length
        input_sequence = protein_seq + masked_peptide
        inputs = tokenizer(input_sequence, return_tensors="pt").to(model.device)

        with torch.no_grad():
            logits = model(**inputs).logits
        mask_token_indices = (inputs["input_ids"] == tokenizer.mask_token_id).nonzero(as_tuple=True)[1]
        logits_at_masks = logits[0, mask_token_indices]

        # Apply top-k sampling
        top_k_logits, top_k_indices = logits_at_masks.topk(top_k, dim=-1)
        probabilities = torch.nn.functional.softmax(top_k_logits, dim=-1)
        predicted_indices = Categorical(probabilities).sample()
        predicted_token_ids = top_k_indices.gather(-1, predicted_indices.unsqueeze(-1)).squeeze(-1)

        generated_binder = tokenizer.decode(predicted_token_ids, skip_special_tokens=True).replace(' ', '')

        # Compute PPL for the generated binder
        ppl_value = compute_pseudo_perplexity(model, tokenizer, protein_seq, generated_binder)

        # Add the generated binder and its PPL to the results list
        binders_with_ppl.append([generated_binder, ppl_value])

    return binders_with_ppl

def generate_peptide(input_seqs, peptide_length=15, top_k=3, num_binders=4):
    if isinstance(input_seqs, str):  # Single sequence
        binders = generate_peptide_for_single_sequence(input_seqs, peptide_length, top_k, num_binders)
        return pd.DataFrame(binders, columns=['Binder', 'Pseudo Perplexity'])

    elif isinstance(input_seqs, list):  # List of sequences
        results = []
        for seq in input_seqs:
            binders = generate_peptide_for_single_sequence(seq, peptide_length, top_k, num_binders)
            for binder, ppl in binders:
                results.append([seq, binder, ppl])
        return pd.DataFrame(results, columns=['Input Sequence', 'Binder', 'Pseudo Perplexity'])
    
model = EsmForMaskedLM.from_pretrained("AmelieSchreiber/esm_interact")
tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t30_150M_UR50D")

protein_seq = "MAPLRKTYVLKLYVAGNTPNSVRALKTLNNILEKEFKGVYALKVIDVLKNPQLAEEDKILATPTLAKVLPPPVRRIIGDLSNREKVLIGLDLLYEEIGDQAEDDLGLE"

results_df = generate_peptide(protein_seq, peptide_length=15, top_k=3, num_binders=5)
print(results_df)