esm_interact / README.md
AmelieSchreiber's picture
Update README.md
cb23dcb
---
license: mit
datasets:
- AmelieSchreiber/interaction_pairs
language:
- en
library_name: transformers
tags:
- ESM-2
- biology
- protein language model
---
# ESM-2 for Interacting Proteins
This model was finetuned on concatenated pairs of interacting proteins in much the same way as [PepMLM](https://huggingface.co/spaces/TianlaiChen/PepMLM).
It is meant to generate interaction partners for proteins using the masked language modeling capabilities of ESM-2. The model is not
well tested, so use with caution. This is just a preliminary experiment.
## Using the Model
To use the model, try running:
```python
from transformers import AutoTokenizer, EsmForMaskedLM
import torch
import pandas as pd
import numpy as np
from torch.distributions import Categorical
def compute_pseudo_perplexity(model, tokenizer, protein_seq, binder_seq):
sequence = protein_seq + binder_seq
tensor_input = tokenizer.encode(sequence, return_tensors='pt').to(model.device)
# Create a mask for the binder sequence
binder_mask = torch.zeros(tensor_input.shape).to(model.device)
binder_mask[0, -len(binder_seq)-1:-1] = 1
# Mask the binder sequence in the input and create labels
masked_input = tensor_input.clone().masked_fill_(binder_mask.bool(), tokenizer.mask_token_id)
labels = tensor_input.clone().masked_fill_(~binder_mask.bool(), -100)
with torch.no_grad():
loss = model(masked_input, labels=labels).loss
return np.exp(loss.item())
def generate_peptide_for_single_sequence(protein_seq, peptide_length = 15, top_k = 3, num_binders = 4):
peptide_length = int(peptide_length)
top_k = int(top_k)
num_binders = int(num_binders)
binders_with_ppl = []
for _ in range(num_binders):
# Generate binder
masked_peptide = '<mask>' * peptide_length
input_sequence = protein_seq + masked_peptide
inputs = tokenizer(input_sequence, return_tensors="pt").to(model.device)
with torch.no_grad():
logits = model(**inputs).logits
mask_token_indices = (inputs["input_ids"] == tokenizer.mask_token_id).nonzero(as_tuple=True)[1]
logits_at_masks = logits[0, mask_token_indices]
# Apply top-k sampling
top_k_logits, top_k_indices = logits_at_masks.topk(top_k, dim=-1)
probabilities = torch.nn.functional.softmax(top_k_logits, dim=-1)
predicted_indices = Categorical(probabilities).sample()
predicted_token_ids = top_k_indices.gather(-1, predicted_indices.unsqueeze(-1)).squeeze(-1)
generated_binder = tokenizer.decode(predicted_token_ids, skip_special_tokens=True).replace(' ', '')
# Compute PPL for the generated binder
ppl_value = compute_pseudo_perplexity(model, tokenizer, protein_seq, generated_binder)
# Add the generated binder and its PPL to the results list
binders_with_ppl.append([generated_binder, ppl_value])
return binders_with_ppl
def generate_peptide(input_seqs, peptide_length=15, top_k=3, num_binders=4):
if isinstance(input_seqs, str): # Single sequence
binders = generate_peptide_for_single_sequence(input_seqs, peptide_length, top_k, num_binders)
return pd.DataFrame(binders, columns=['Binder', 'Pseudo Perplexity'])
elif isinstance(input_seqs, list): # List of sequences
results = []
for seq in input_seqs:
binders = generate_peptide_for_single_sequence(seq, peptide_length, top_k, num_binders)
for binder, ppl in binders:
results.append([seq, binder, ppl])
return pd.DataFrame(results, columns=['Input Sequence', 'Binder', 'Pseudo Perplexity'])
model = EsmForMaskedLM.from_pretrained("AmelieSchreiber/esm_interact")
tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t30_150M_UR50D")
protein_seq = "MAPLRKTYVLKLYVAGNTPNSVRALKTLNNILEKEFKGVYALKVIDVLKNPQLAEEDKILATPTLAKVLPPPVRRIIGDLSNREKVLIGLDLLYEEIGDQAEDDLGLE"
results_df = generate_peptide(protein_seq, peptide_length=15, top_k=3, num_binders=5)
print(results_df)
```