Edit model card

{AnanyaCoder/XLsim_en-de}

XLSim: MT Evaluation Metric based on Siamese Architecture

XLsim is a supervised reference-based metric that regresses on human scores provided by WMT (2017-2022). Using a cross-lingual language model XLM-RoBERTa-base [ https://huggingface.co/xlm-roberta-base ] , we train a supervised model using a Siamese network architecture with CosineSimilarityLoss.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:



from sentence_transformers import SentenceTransformer,losses, models, util

metric_model = SentenceTransformer('{MODEL_NAME}')

#Compute embedding for both lists
mt_samples = ['This is a mt sentence1','This is a mt sentence2']
ref_samples = ['This is a ref sentence1','This is a ref sentence2']

mtembeddings = metric_model.encode(mt_samples, convert_to_tensor=True)
refembeddings = metric_model.encode(ref_samples, convert_to_tensor=True)

#Compute cosine-similarities
cosine_scores_refmt = util.cos_sim(mtembeddings, refembeddings)
#cosine_scores_srcmt = util.cos_sim(mtembeddings, srcembeddings) #qe
metric_model_scores = []
for i in range(len(mt_samples)):
    metric_model_scores.append(cosine_scores_refmt[i][i].tolist())

scores = metric_model_scores

Evaluation Results

For an automated evaluation of this model, see: WMT23 Metrics Shared Task findings

Training

The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 6625 with parameters:

{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss

Parameters of the fit()-Method:

{
    "epochs": 4,
    "evaluation_steps": 1000,
    "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 2650,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)

Citing & Authors

MEE4 and XLsim : IIIT HYD’s Submissions’ for WMT23 Metrics Shared Task (Mukherjee & Shrivastava, WMT 2023)

Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.