metadata
license: mit
base_model: camembert-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: camembert_classification_tools
results: []
camembert_classification_tools
This model is a fine-tuned version of camembert-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6969
- Accuracy: 0.775
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 24
- eval_batch_size: 192
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 5 | 2.0733 | 0.2 |
No log | 2.0 | 10 | 2.0478 | 0.275 |
No log | 3.0 | 15 | 1.9161 | 0.45 |
No log | 4.0 | 20 | 1.7607 | 0.425 |
No log | 5.0 | 25 | 1.5895 | 0.575 |
No log | 6.0 | 30 | 1.4201 | 0.625 |
No log | 7.0 | 35 | 1.2944 | 0.675 |
No log | 8.0 | 40 | 1.2193 | 0.75 |
No log | 9.0 | 45 | 1.0974 | 0.775 |
No log | 10.0 | 50 | 1.0429 | 0.825 |
No log | 11.0 | 55 | 0.9602 | 0.8 |
No log | 12.0 | 60 | 0.9059 | 0.8 |
No log | 13.0 | 65 | 0.8365 | 0.825 |
No log | 14.0 | 70 | 0.9396 | 0.725 |
No log | 15.0 | 75 | 0.8271 | 0.8 |
No log | 16.0 | 80 | 0.7762 | 0.8 |
No log | 17.0 | 85 | 0.7847 | 0.8 |
No log | 18.0 | 90 | 0.7012 | 0.8 |
No log | 19.0 | 95 | 0.6971 | 0.8 |
No log | 20.0 | 100 | 0.7186 | 0.775 |
No log | 21.0 | 105 | 0.7946 | 0.725 |
No log | 22.0 | 110 | 0.7721 | 0.725 |
No log | 23.0 | 115 | 0.7642 | 0.725 |
No log | 24.0 | 120 | 0.7298 | 0.75 |
No log | 25.0 | 125 | 0.7191 | 0.75 |
No log | 26.0 | 130 | 0.6978 | 0.775 |
No log | 27.0 | 135 | 0.6913 | 0.8 |
No log | 28.0 | 140 | 0.6949 | 0.775 |
No log | 29.0 | 145 | 0.6961 | 0.775 |
No log | 30.0 | 150 | 0.6969 | 0.775 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.1