AntoineD's picture
End of training
e5bd53e
|
raw
history blame
5.04 kB
metadata
license: mit
base_model: camembert-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: camembert_classification_tools_qlora_fr
    results: []

camembert_classification_tools_qlora_fr

This model is a fine-tuned version of camembert-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7203
  • Accuracy: 0.875

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 24
  • eval_batch_size: 192
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 5 2.0791 0.075
No log 2.0 10 2.0909 0.075
No log 3.0 15 2.0903 0.075
No log 4.0 20 2.0790 0.075
No log 5.0 25 2.0606 0.075
No log 6.0 30 2.0206 0.1
No log 7.0 35 1.9780 0.25
No log 8.0 40 1.9250 0.375
No log 9.0 45 1.8724 0.5
No log 10.0 50 1.8129 0.525
No log 11.0 55 1.7570 0.55
No log 12.0 60 1.7009 0.65
No log 13.0 65 1.6472 0.625
No log 14.0 70 1.5928 0.675
No log 15.0 75 1.5434 0.7
No log 16.0 80 1.4880 0.675
No log 17.0 85 1.4333 0.7
No log 18.0 90 1.3811 0.7
No log 19.0 95 1.3339 0.7
No log 20.0 100 1.2919 0.75
No log 21.0 105 1.2493 0.725
No log 22.0 110 1.2091 0.725
No log 23.0 115 1.1707 0.75
No log 24.0 120 1.1311 0.775
No log 25.0 125 1.0946 0.825
No log 26.0 130 1.0642 0.8
No log 27.0 135 1.0363 0.8
No log 28.0 140 1.0172 0.8
No log 29.0 145 0.9939 0.825
No log 30.0 150 0.9682 0.825
No log 31.0 155 0.9443 0.8
No log 32.0 160 0.9289 0.825
No log 33.0 165 0.9113 0.85
No log 34.0 170 0.9017 0.85
No log 35.0 175 0.8804 0.85
No log 36.0 180 0.8598 0.85
No log 37.0 185 0.8484 0.825
No log 38.0 190 0.8361 0.825
No log 39.0 195 0.8306 0.825
No log 40.0 200 0.8242 0.825
No log 41.0 205 0.8198 0.85
No log 42.0 210 0.8051 0.85
No log 43.0 215 0.7854 0.85
No log 44.0 220 0.7727 0.9
No log 45.0 225 0.7626 0.9
No log 46.0 230 0.7579 0.9
No log 47.0 235 0.7500 0.9
No log 48.0 240 0.7477 0.875
No log 49.0 245 0.7517 0.85
No log 50.0 250 0.7484 0.85
No log 51.0 255 0.7446 0.85
No log 52.0 260 0.7414 0.85
No log 53.0 265 0.7357 0.875
No log 54.0 270 0.7303 0.875
No log 55.0 275 0.7249 0.875
No log 56.0 280 0.7232 0.875
No log 57.0 285 0.7228 0.875
No log 58.0 290 0.7215 0.875
No log 59.0 295 0.7206 0.875
No log 60.0 300 0.7203 0.875

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.14.1