metadata
license: mit
base_model: prajjwal1/bert-tiny
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: MM05-PC
results: []
MM05-PC
This model is a fine-tuned version of prajjwal1/bert-tiny on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3358
- Accuracy: 0.99
- F1: 0.9950
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 0.0 | 50 | 0.6889 | 0.58 | 0.4258 |
No log | 0.01 | 100 | 0.6984 | 0.42 | 0.2485 |
No log | 0.01 | 150 | 0.6948 | 0.42 | 0.2485 |
No log | 0.02 | 200 | 0.6867 | 0.58 | 0.4258 |
No log | 0.02 | 250 | 0.6859 | 0.75 | 0.7192 |
No log | 0.02 | 300 | 0.6674 | 0.67 | 0.6705 |
No log | 0.03 | 350 | 0.6093 | 0.65 | 0.6514 |
No log | 0.03 | 400 | 0.5726 | 0.71 | 0.7118 |
No log | 0.04 | 450 | 0.5586 | 0.73 | 0.7311 |
0.6576 | 0.04 | 500 | 0.5368 | 0.67 | 0.6680 |
0.6576 | 0.04 | 550 | 0.5532 | 0.73 | 0.7311 |
0.6576 | 0.05 | 600 | 0.5290 | 0.73 | 0.7311 |
0.6576 | 0.05 | 650 | 0.5073 | 0.73 | 0.7311 |
0.6576 | 0.06 | 700 | 0.4731 | 0.76 | 0.7489 |
0.6576 | 0.06 | 750 | 0.4519 | 0.81 | 0.7956 |
0.6576 | 0.06 | 800 | 0.4411 | 0.81 | 0.7956 |
0.6576 | 0.07 | 850 | 0.4401 | 0.81 | 0.7956 |
0.6576 | 0.07 | 900 | 0.4382 | 0.81 | 0.7956 |
0.6576 | 0.08 | 950 | 0.4351 | 0.81 | 0.7956 |
0.4885 | 0.08 | 1000 | 0.4348 | 0.81 | 0.7956 |
0.4885 | 0.08 | 1050 | 0.4289 | 0.81 | 0.7956 |
0.4885 | 0.09 | 1100 | 0.4130 | 0.81 | 0.7956 |
0.4885 | 0.09 | 1150 | 0.4087 | 0.81 | 0.7956 |
0.4885 | 0.1 | 1200 | 0.4165 | 0.81 | 0.7956 |
0.4885 | 0.1 | 1250 | 0.4088 | 0.81 | 0.7956 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0