Edit model card

sentiment

This model is a fine-tuned version of naufalihsan/indonesian-sbert-large on the indonlu dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4450
  • Accuracy: 0.95
  • Precision: 0.9500
  • Recall: 0.95
  • F1: 0.9496

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 40
  • eval_batch_size: 40
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 275 0.2837 0.9405 0.9427 0.9405 0.9396
0.0501 2.0 550 0.1966 0.9460 0.9468 0.9460 0.9458
0.0501 3.0 825 0.2927 0.9437 0.9435 0.9437 0.9427
0.0369 4.0 1100 0.3666 0.9460 0.9459 0.9460 0.9456
0.0369 5.0 1375 0.3579 0.9468 0.9465 0.9468 0.9465
0.0098 6.0 1650 0.4497 0.9476 0.9479 0.9476 0.9471
0.0098 7.0 1925 0.4308 0.95 0.9501 0.95 0.9496
0.0012 8.0 2200 0.4402 0.95 0.9499 0.95 0.9496
0.0012 9.0 2475 0.4429 0.95 0.9500 0.95 0.9496
0.0007 10.0 2750 0.4450 0.95 0.9500 0.95 0.9496

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2
Downloads last month
50
Safetensors
Model size
670M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for AptaArkana/indonesian_sentiment_sbert_base

Finetuned
(1)
this model

Dataset used to train AptaArkana/indonesian_sentiment_sbert_base

Evaluation results