Edit model card

roberta-base-finetuned-ner-kmeans-twitter

This model is a fine-tuned version of ArBert/roberta-base-finetuned-ner on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6645
  • Precision: 0.6885
  • Recall: 0.7665
  • F1: 0.7254

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1
No log 1.0 245 0.2820 0.6027 0.7543 0.6700
No log 2.0 490 0.2744 0.6308 0.7864 0.7000
0.2301 3.0 735 0.2788 0.6433 0.7637 0.6984
0.2301 4.0 980 0.3255 0.6834 0.7221 0.7022
0.1153 5.0 1225 0.3453 0.6686 0.7439 0.7043
0.1153 6.0 1470 0.3988 0.6797 0.7420 0.7094
0.0617 7.0 1715 0.4711 0.6702 0.7259 0.6969
0.0617 8.0 1960 0.4904 0.6904 0.7505 0.7192
0.0328 9.0 2205 0.5088 0.6591 0.7713 0.7108
0.0328 10.0 2450 0.5709 0.6468 0.7788 0.7067
0.019 11.0 2695 0.5570 0.6642 0.7533 0.7059
0.019 12.0 2940 0.5574 0.6899 0.7656 0.7258
0.0131 13.0 3185 0.5858 0.6952 0.7609 0.7265
0.0131 14.0 3430 0.6239 0.6556 0.7826 0.7135
0.0074 15.0 3675 0.5931 0.6825 0.7599 0.7191
0.0074 16.0 3920 0.6364 0.6785 0.7580 0.7161
0.005 17.0 4165 0.6437 0.6855 0.7580 0.7199
0.005 18.0 4410 0.6610 0.6779 0.7599 0.7166
0.0029 19.0 4655 0.6625 0.6853 0.7656 0.7232
0.0029 20.0 4900 0.6645 0.6885 0.7665 0.7254

Framework versions

  • Transformers 4.16.2
  • Pytorch 1.10.0+cu111
  • Datasets 1.18.3
  • Tokenizers 0.11.0
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.