|
--- |
|
license: cc-by-nc-4.0 |
|
tags: |
|
- moe |
|
- merge |
|
- mergekit |
|
base_model: |
|
- mlabonne/AlphaMonarch-7B |
|
- beowolx/CodeNinja-1.0-OpenChat-7B |
|
- SanjiWatsuki/Kunoichi-DPO-v2-7B |
|
- mlabonne/NeuralDaredevil-7B |
|
model-index: |
|
- name: Beyonder-4x7B-random-lora |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 71.25 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Aratako/Beyonder-4x7B-random-lora |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 87.4 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Aratako/Beyonder-4x7B-random-lora |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 64.78 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Aratako/Beyonder-4x7B-random-lora |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 70.49 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Aratako/Beyonder-4x7B-random-lora |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 82.16 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Aratako/Beyonder-4x7B-random-lora |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 67.4 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Aratako/Beyonder-4x7B-random-lora |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
# Beyonder-4x7B-v3-random-lora |
|
|
|
The idea was very simple. If heuristic methods for determining gate parameters in mergekit-based MoE models can work well, then perhaps we could obtain a better performing model by fine-tuning only the gate parameters. |
|
|
|
This model is an attempt at testing that idea. Unfortunately, the performance degraded slightly, but I am sharing it as an experimental result. |
|
|
|
## Model Details |
|
|
|
First, I created an MoE model using mergekit with gate_mode=random and the following four models (same as [mlabonne/Beyonder-4x7B-v3](https://huggingface.co/mlabonne/Beyonder-4x7B-v3)): |
|
- [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) |
|
- [beowolx/CodeNinja-1.0-OpenChat-7B](https://huggingface.co/beowolx/CodeNinja-1.0-OpenChat-7B) |
|
- [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B) |
|
- [mlabonne/NeuralDaredevil-7](https://huggingface.co/mlabonne/NeuralDaredevil-7B) |
|
|
|
Then, I used LoRA to fine-tune only the gate parameters by specifying "gate" in target_modules. |
|
The data used for fine-tuning is as follows. I used the Mistral prompt format. |
|
- 5000 random samples from [llm-jp/oasst1-21k-en](https://huggingface.co/datasets/llm-jp/oasst1-21k-en) |
|
- 5000 random samples from [databricks/databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) |
|
- 5000 random samples from [hieunguyenminh/roleplay](https://huggingface.co/datasets/hieunguyenminh/roleplay) |
|
- 5000 random samples from [meta-math/MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA) |
|
- 5000 random samples from [m-a-p/CodeFeedback-Filtered-Instruction](https://huggingface.co/datasets/m-a-p/CodeFeedback-Filtered-Instruction) |
|
|
|
The training was conducted on runpod using 4xA6000 GPUs. The main training parameters are as follows: |
|
- lora_r: 128 |
|
- lora_alpha: 256 |
|
- lora_dropout: 0.05 |
|
- lora_target_modules: "gate" |
|
- learning_rate: 3e-4 |
|
- num_train_epochs: 5 |
|
- batch_size: 64 |
|
- max_seq_length: 2048 |
|
|
|
## Evaluation |
|
|
|
The evaluation results show a slight degradation in performance. |
|
Apart from the possibility that this approach may not be effective, other potential causes could be issues with the dataset, training parameters, training setup (such as prompt formatting), and so on. |
|
|
|
### Nous ([LLM AutoEval](https://github.com/mlabonne/llm-autoeval)) |
|
|
|
| Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench | |
|
|---|---:|---:|---:|---:|---:| |
|
| [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) [π](https://gist.github.com/mlabonne/1d33c86824b3a11d2308e36db1ba41c1) | 62.74 | 45.37 | 77.01 | 78.39 | 50.2 | |
|
| [mlabonne/Beyonder-4x7B-v3](https://huggingface.co/mlabonne/Beyonder-4x7B-v3) [π](https://gist.github.com/mlabonne/3740020807e559f7057c32e85ce42d92) | 61.91 | 45.85 | 76.67 | 74.98 | 50.12 | |
|
| [**Aratako/Beyonder-4x7B-v3-random-lora**](https://huggingface.co/Aratako/Beyonder-4x7B-v3-random-lora) [π](https://gist.github.com/Aratako/f86144312989d69f92c64ea4f25a8bb6) | **60.29** | **45.82** | **76.69** | **69.94** | **48.72** | |
|
| [mlabonne/NeuralDaredevil-7B](https://huggingface.co/mlabonne/NeuralDaredevil-7B) [π](https://gist.github.com/mlabonne/cbeb077d1df71cb81c78f742f19f4155) | 59.39 | 45.23 | 76.2 | 67.61 | 48.52 | |
|
| [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B) [π](https://gist.github.com/mlabonne/895ff5171e998abfdf2a41a4f9c84450) | 58.29 | 44.79 | 75.05 | 65.68 | 47.65 | |
|
| [mlabonne/Beyonder-4x7B-v2](https://huggingface.co/mlabonne/Beyonder-4x7B-v2) [π](https://gist.github.com/mlabonne/f73baa140a510a676242f8a4496d05ca) | 57.13 | 45.29 | 75.95 | 60.86 | 46.4 | |
|
| [beowolx/CodeNinja-1.0-OpenChat-7B](https://huggingface.co/beowolx/CodeNinja-1.0-OpenChat-7B) [π](https://gist.github.com/mlabonne/08b5280c221fbd7f98eb27561ae902a3) | 50.35 | 39.98 | 71.77 | 48.73 | 40.92 | |
|
|
|
### [MT-Bench](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge) |
|
|
|
**1-turn** |
|
|Model|Coding|Extraction|Humanities|Math|Reasoning|Roleplay|STEM|Writing|avg_score| |
|
|---|---|---|---|---|---|---|---|---|---| |
|
| [mlabonne/Beyonder-4x7B-v3](https://huggingface.co/mlabonne/Beyonder-4x7B-v3) | 6.7 | 8.3 | 9.7 | 6.7 | 6.3 | 9.3 | 9.7 | 10.0 | 8.33750 | |
|
| [**Aratako/Beyonder-4x7B-v3-random-lora**](https://huggingface.co/Aratako/Beyonder-4x7B-v3-random-lora) | **6.6** | **8.2** | **9.6** | **6.3** | **6.4** | **8.7** | **9.4** | **9.5** | **8.08750** | |
|
| [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) | 5.3 | 8.5 | 9.9 | 6.8 | 6.0 | 9.1 | 9.55 | 8.9 | 8.00625 | |
|
|
|
![mt-bench-1turn](./mt-bench-1turn.png) |
|
|
|
**2-turn** |
|
|Model|Coding|Extraction|Humanities|Math|Reasoning|Roleplay|STEM|Writing|avg_score| |
|
|---|---|---|---|---|---|---|---|---|---| |
|
| [mlabonne/Beyonder-4x7B-v3](https://huggingface.co/mlabonne/Beyonder-4x7B-v3) | 5.4 | 7.6 | 10.0 | 3.5 | 5.5 | 9.0 | 9.6 | 9.1 | 7.46250 | |
|
| [**Aratako/Beyonder-4x7B-v3-random-lora**](https://huggingface.co/Aratako/Beyonder-4x7B-v3-random-lora) | **5.1** | **8.1** | **9.9** | **4.1** | **3.7** | **8.55** | **9.0** | **7.7** | **7.01875** | |
|
| [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) | 4.1 | 8.4 | 9.8 | 4.7 | 5.6 | 9.0 | 9.2 | 9.5 | 7.53750 | |
|
|
|
![mt-bench-2turn](./mt-bench-2turn.png) |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Aratako__Beyonder-4x7B-random-lora) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |73.91| |
|
|AI2 Reasoning Challenge (25-Shot)|71.25| |
|
|HellaSwag (10-Shot) |87.40| |
|
|MMLU (5-Shot) |64.78| |
|
|TruthfulQA (0-shot) |70.49| |
|
|Winogrande (5-shot) |82.16| |
|
|GSM8k (5-shot) |67.40| |
|
|
|
|