fine_tuned_segmentation-3.0_1e-3_32
This model is a fine-tuned version of pyannote/segmentation-3.0 on the ArtFair/diarizers_dataset_70-15-15 default dataset. It achieves the following results on the evaluation set:
- Loss: 0.3590
- Der: 0.2602
- False Alarm: 0.1497
- Missed Detection: 0.0864
- Confusion: 0.0241
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion |
---|---|---|---|---|---|---|---|
0.392 | 1.0 | 929 | 0.3807 | 0.2790 | 0.1647 | 0.0865 | 0.0278 |
0.3543 | 2.0 | 1858 | 0.3680 | 0.2685 | 0.1530 | 0.0889 | 0.0266 |
0.3494 | 3.0 | 2787 | 0.3526 | 0.2567 | 0.1427 | 0.0901 | 0.0238 |
0.3287 | 4.0 | 3716 | 0.3592 | 0.2605 | 0.1496 | 0.0869 | 0.0240 |
0.3339 | 5.0 | 4645 | 0.3590 | 0.2602 | 0.1497 | 0.0864 | 0.0241 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.4.1+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
- Downloads last month
- 1
Model tree for ArtFair/fine_tuned_segmentation-3.0_1e-3_32
Base model
pyannote/segmentation-3.0