metadata
language:
- ro
license: apache-2.0
base_model: openai/whisper-small
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Romanian
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Romanian voice 1.0
type: mozilla-foundation/common_voice_11_0
config: ro
split: test
args: 'config: se, split: test'
metrics:
- name: Wer
type: wer
value: 23.876263531435946
Whisper Romanian
This model is a fine-tuned version of openai/whisper-small on the Romanian voice 1.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2557
- Wer: 23.8763
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 1500
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0156 | 0.45 | 250 | 0.2336 | 24.4175 |
0.011 | 0.9 | 500 | 0.2361 | 25.0627 |
0.0061 | 1.35 | 750 | 0.2479 | 27.5539 |
0.0084 | 1.8 | 1000 | 0.2491 | 27.3174 |
0.0054 | 2.25 | 1250 | 0.2532 | 21.1234 |
0.0041 | 2.7 | 1500 | 0.2557 | 23.8763 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0