This a TinyLlama mix merge, experimental, using a custom merge method. Should be better at RP.
merge_method: task_swapping
base_model: Doctor-Shotgun/TinyLlama-1.1B-32k
models:
- model: cognitivecomputations/TinyDolphin-2.8.2-1.1b-laser
parameters:
weight: 0.75
diagonal_offset: 5
- model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
parameters:
weight: 0.85
diagonal_offset: 17
invert_offset: True
dtype: bfloat16
name: bye
---
merge_method: task_swapping
base_model: Doctor-Shotgun/TinyLlama-1.1B-32k-Instruct
models:
- model: vihangd/DopeyTinyLlama-1.1B-v1
parameters:
weight: 0.8
diagonal_offset: 3
invert_offset: False
dtype: bfloat16
name: hello
---
merge_method: task_arithmetic
base_model: Doctor-Shotgun/TinyLlama-1.1B-32k
models:
- model: hello
parameters:
weight: 0.66
- model: bye+Anarchist/PIPPA_LORA_TinyLlama
parameters:
weight: 0.5
dtype: bfloat16
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 32.99 |
AI2 Reasoning Challenge (25-Shot) | 31.48 |
HellaSwag (10-Shot) | 48.39 |
MMLU (5-Shot) | 25.05 |
TruthfulQA (0-shot) | 33.45 |
Winogrande (5-shot) | 58.48 |
GSM8k (5-shot) | 1.06 |
- Downloads last month
- 567
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard31.480
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard48.390
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard25.050
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard33.450
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard58.480
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard1.060