asr-nepali / README.md
Ashwini1412's picture
Model save
29236de
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
metrics:
- wer
- accuracy
model-index:
- name: asr-nepali
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# asr-nepali
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Wer: 1.0
- Cer: 0.9965
- Accuracy: 0.0035
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 180
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---:|:------:|:--------:|
| 451.545 | 1.46 | 100 | 43.3285 | 1.0 | 0.9684 | 0.0316 |
| 194.4567 | 2.92 | 200 | nan | 1.0 | 0.9965 | 0.0035 |
| 0.0 | 4.38 | 300 | nan | 1.0 | 0.9965 | 0.0035 |
| 0.0 | 5.84 | 400 | nan | 1.0 | 0.9965 | 0.0035 |
| 0.0 | 7.3 | 500 | nan | 1.0 | 0.9965 | 0.0035 |
| 0.0 | 8.76 | 600 | nan | 1.0 | 0.9965 | 0.0035 |
| 0.0 | 10.22 | 700 | nan | 1.0 | 0.9965 | 0.0035 |
| 0.0 | 11.68 | 800 | nan | 1.0 | 0.9965 | 0.0035 |
| 0.0 | 13.14 | 900 | nan | 1.0 | 0.9965 | 0.0035 |
| 0.0 | 14.6 | 1000 | nan | 1.0 | 0.9965 | 0.0035 |
| 0.0 | 16.06 | 1100 | nan | 1.0 | 0.9965 | 0.0035 |
| 0.0 | 17.52 | 1200 | nan | 1.0 | 0.9965 | 0.0035 |
| 0.0 | 18.98 | 1300 | nan | 1.0 | 0.9965 | 0.0035 |
| 0.0 | 20.44 | 1400 | nan | 1.0 | 0.9965 | 0.0035 |
| 0.0 | 21.9 | 1500 | nan | 1.0 | 0.9965 | 0.0035 |
| 0.0 | 23.36 | 1600 | nan | 1.0 | 0.9965 | 0.0035 |
| 0.0 | 24.82 | 1700 | nan | 1.0 | 0.9965 | 0.0035 |
| 0.0 | 26.28 | 1800 | nan | 1.0 | 0.9965 | 0.0035 |
| 0.0 | 27.74 | 1900 | nan | 1.0 | 0.9965 | 0.0035 |
| 0.0 | 29.2 | 2000 | nan | 1.0 | 0.9965 | 0.0035 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0