|
--- |
|
license: apache-2.0 |
|
language: |
|
- bn |
|
--- |
|
|
|
To run: |
|
``` |
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16 |
|
) |
|
|
|
config = { |
|
'base_model_name_or_path': 'deepseek-ai/deepseek-math-7b-base' |
|
} |
|
|
|
|
|
PEFT_MODEL = "trained-model3" |
|
|
|
config = PeftConfig.from_pretrained(PEFT_MODEL) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
config.base_model_name_or_path, |
|
return_dict=True, |
|
quantization_config=bnb_config, |
|
device_map="sequential", |
|
trust_remote_code=True |
|
) |
|
|
|
tokenizer=AutoTokenizer.from_pretrained(config.base_model_name_or_path) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
model = PeftModel.from_pretrained(model, PEFT_MODEL) |
|
|
|
|
|
generation_config = model.generation_config |
|
generation_config.max_new_tokens = 2048 |
|
generation_config.temperature = 0.7 |
|
generation_config.top_p = 0.7 |
|
generation_config.do_sample = True |
|
generation_config.num_return_sequences = 1 |
|
generation_config.pad_token_id = tokenizer.eos_token_id |
|
generation_config.eos_token_id = tokenizer.eos_token_id |
|
|
|
prompt = f"""Problem Statement: {ques}""" |
|
encoding = tokenizer(prompt, return_tensors="pt").to(device) |
|
with torch.inference_mode(): |
|
outputs = model.generate( |
|
input_ids = encoding.input_ids, |
|
attention_mask = encoding.attention_mask, |
|
generation_config = generation_config |
|
) |
|
|
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |