Edit model card

swin-tiny-patch4-window7-224-dmae-va-da2-80

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2098
  • Accuracy: 0.9483

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 80

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.94 4 1.3020 0.3793
No log 1.88 8 1.2779 0.3966
1.3725 2.82 12 1.3148 0.3276
1.3725 4.0 17 1.3035 0.3793
1.202 4.94 21 1.1813 0.4828
1.202 5.88 25 1.0447 0.5172
1.202 6.82 29 1.0149 0.5172
1.0137 8.0 34 0.9113 0.5345
1.0137 8.94 38 0.8100 0.5690
0.7855 9.88 42 0.7788 0.6552
0.7855 10.82 46 0.6669 0.6724
0.6434 12.0 51 0.6208 0.7586
0.6434 12.94 55 0.5012 0.8276
0.6434 13.88 59 0.5190 0.8276
0.5249 14.82 63 0.5358 0.7759
0.5249 16.0 68 0.4111 0.8448
0.4479 16.94 72 0.4384 0.8103
0.4479 17.88 76 0.3855 0.8448
0.3549 18.82 80 0.4300 0.8103
0.3549 20.0 85 0.3456 0.8793
0.3549 20.94 89 0.2936 0.8966
0.3078 21.88 93 0.3196 0.9138
0.3078 22.82 97 0.3426 0.8966
0.3084 24.0 102 0.2944 0.8966
0.3084 24.94 106 0.3100 0.8966
0.2515 25.88 110 0.2952 0.8793
0.2515 26.82 114 0.2951 0.8621
0.2515 28.0 119 0.3316 0.8966
0.23 28.94 123 0.3052 0.8793
0.23 29.88 127 0.3799 0.8621
0.2139 30.82 131 0.3239 0.8793
0.2139 32.0 136 0.3369 0.8793
0.2048 32.94 140 0.2550 0.9310
0.2048 33.88 144 0.1913 0.8966
0.2048 34.82 148 0.3013 0.9138
0.189 36.0 153 0.2098 0.9483
0.189 36.94 157 0.1898 0.9310
0.1821 37.88 161 0.3412 0.8621
0.1821 38.82 165 0.3009 0.8793
0.1815 40.0 170 0.1856 0.9310
0.1815 40.94 174 0.1899 0.9310
0.1815 41.88 178 0.2124 0.9310
0.1396 42.82 182 0.2113 0.8966
0.1396 44.0 187 0.1331 0.9483
0.1571 44.94 191 0.2087 0.9310
0.1571 45.88 195 0.2447 0.9310
0.1571 46.82 199 0.1935 0.9483
0.1454 48.0 204 0.2409 0.9310
0.1454 48.94 208 0.2427 0.9310
0.1389 49.88 212 0.2864 0.9138
0.1389 50.82 216 0.3099 0.9138
0.1182 52.0 221 0.2566 0.9138
0.1182 52.94 225 0.2442 0.9138
0.1182 53.88 229 0.2263 0.9310
0.1411 54.82 233 0.2366 0.9138
0.1411 56.0 238 0.1764 0.9483
0.1023 56.94 242 0.1281 0.9310
0.1023 57.88 246 0.1593 0.9483
0.1198 58.82 250 0.2230 0.9310
0.1198 60.0 255 0.1710 0.9310
0.1198 60.94 259 0.1543 0.9483
0.0966 61.88 263 0.1757 0.9310
0.0966 62.82 267 0.1813 0.9138
0.1209 64.0 272 0.1941 0.9138
0.1209 64.94 276 0.1982 0.9310
0.107 65.88 280 0.2108 0.9310
0.107 66.82 284 0.2435 0.9310
0.107 68.0 289 0.2253 0.9310
0.0981 68.94 293 0.2033 0.9310
0.0981 69.88 297 0.1985 0.9310
0.1205 70.82 301 0.1905 0.9310
0.1205 72.0 306 0.1732 0.9483
0.129 72.94 310 0.1672 0.9483
0.129 73.88 314 0.1616 0.9483
0.129 74.82 318 0.1606 0.9483
0.1066 75.29 320 0.1608 0.9483

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
7
Safetensors
Model size
27.6M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Augusto777/swin-tiny-patch4-window7-224-dmae-va-da2-80

Finetuned
(477)
this model