swinv2-tiny-patch4-window8-256-dmae-humeda-muestra
This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9332
- Accuracy: 0.6923
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.8421 | 4 | 0.9536 | 0.6538 |
No log | 1.8947 | 9 | 0.9803 | 0.6154 |
0.7659 | 2.9474 | 14 | 0.9831 | 0.6346 |
0.7659 | 4.0 | 19 | 1.0565 | 0.6346 |
0.7069 | 4.8421 | 23 | 0.9332 | 0.6923 |
0.7069 | 5.8947 | 28 | 0.9039 | 0.6731 |
0.5937 | 6.9474 | 33 | 0.8719 | 0.6538 |
0.5937 | 8.0 | 38 | 0.9287 | 0.6923 |
0.5467 | 8.8421 | 42 | 0.9408 | 0.6538 |
0.5467 | 9.8947 | 47 | 0.9465 | 0.6346 |
0.5226 | 10.9474 | 52 | 1.0464 | 0.6346 |
0.5226 | 12.0 | 57 | 1.0826 | 0.6538 |
0.4715 | 12.8421 | 61 | 0.9619 | 0.6154 |
0.4715 | 13.8947 | 66 | 0.9822 | 0.6154 |
0.4752 | 14.9474 | 71 | 0.9639 | 0.6538 |
0.4752 | 16.0 | 76 | 0.9449 | 0.6731 |
0.4688 | 16.8421 | 80 | 0.9450 | 0.6346 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for Augusto777/swinv2-tiny-patch4-window8-256-dmae-humeda-muestra
Base model
microsoft/swinv2-tiny-patch4-window8-256