Augusto777's picture
End of training
13fb073 verified
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swinv2-tiny-patch4-window8-256-ve-U13-b-80b
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7391304347826086

swinv2-tiny-patch4-window8-256-ve-U13-b-80b

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7057
  • Accuracy: 0.7391

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 80

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.92 6 1.3861 0.1304
1.386 2.0 13 1.3837 0.4348
1.386 2.92 19 1.3776 0.3043
1.3807 4.0 26 1.3570 0.2391
1.3386 4.92 32 1.3224 0.2174
1.3386 6.0 39 1.2085 0.3478
1.209 6.92 45 1.1056 0.4565
1.0561 8.0 52 1.0507 0.4783
1.0561 8.92 58 1.0161 0.4565
0.9157 10.0 65 0.8613 0.6304
0.8002 10.92 71 0.9073 0.5652
0.8002 12.0 78 0.8300 0.6304
0.7181 12.92 84 0.8958 0.5870
0.6405 14.0 91 0.8075 0.7174
0.6405 14.92 97 0.7478 0.6957
0.6064 16.0 104 0.7370 0.7174
0.5556 16.92 110 0.7057 0.7391
0.5556 18.0 117 0.7395 0.6522
0.4822 18.92 123 0.8734 0.6957
0.4241 20.0 130 0.9991 0.6739
0.4241 20.92 136 0.8416 0.7174
0.4307 22.0 143 0.9195 0.6957
0.4307 22.92 149 0.9211 0.6522
0.381 24.0 156 0.9683 0.6087
0.3707 24.92 162 1.0067 0.6739
0.3707 26.0 169 0.9793 0.6522
0.3918 26.92 175 0.9758 0.6739
0.3513 28.0 182 0.9761 0.6739
0.3513 28.92 188 1.0745 0.6304
0.2739 30.0 195 1.0775 0.6739
0.2882 30.92 201 1.1521 0.6739
0.2882 32.0 208 1.2072 0.6522
0.2588 32.92 214 1.1374 0.6739
0.2498 34.0 221 1.2131 0.6522
0.2498 34.92 227 1.1309 0.7391
0.2584 36.0 234 1.2828 0.6957
0.2228 36.92 240 1.1381 0.6739
0.2228 38.0 247 1.2116 0.6522
0.2408 38.92 253 1.1962 0.6739
0.2042 40.0 260 1.2557 0.6739
0.2042 40.92 266 1.3511 0.6739
0.2141 42.0 273 1.3636 0.6304
0.2141 42.92 279 1.3084 0.6304
0.2135 44.0 286 1.3847 0.6087
0.191 44.92 292 1.2408 0.6957
0.191 46.0 299 1.1750 0.7174
0.1833 46.92 305 1.1804 0.6957
0.189 48.0 312 1.1867 0.7174
0.189 48.92 318 1.0623 0.7391
0.2196 50.0 325 1.2626 0.6957
0.1505 50.92 331 1.2745 0.6957
0.1505 52.0 338 1.3473 0.6957
0.1604 52.92 344 1.3535 0.6522
0.1377 54.0 351 1.3873 0.6522
0.1377 54.92 357 1.4287 0.6522
0.1752 56.0 364 1.3014 0.6957
0.1684 56.92 370 1.3564 0.6739
0.1684 58.0 377 1.4165 0.6957
0.1597 58.92 383 1.3624 0.6739
0.1393 60.0 390 1.3018 0.6957
0.1393 60.92 396 1.3197 0.6739
0.1347 62.0 403 1.3542 0.6739
0.1347 62.92 409 1.3460 0.6739
0.155 64.0 416 1.3998 0.6739
0.1198 64.92 422 1.3982 0.6739
0.1198 66.0 429 1.3989 0.6522
0.1318 66.92 435 1.4035 0.6522
0.1382 68.0 442 1.3626 0.6522
0.1382 68.92 448 1.3714 0.6522
0.1451 70.0 455 1.4174 0.6739
0.1203 70.92 461 1.4343 0.6739
0.1203 72.0 468 1.4045 0.6522
0.141 72.92 474 1.3904 0.6522
0.1516 73.85 480 1.3849 0.6522

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0