Augusto777's picture
End of training
19338a3 verified
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swinv2-tiny-patch4-window8-256-ve-Ub
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.09803921568627451

swinv2-tiny-patch4-window8-256-ve-Ub

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 8.0201
  • Accuracy: 0.0980

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.57 1 8.0201 0.0980
No log 1.71 3 8.0044 0.0980
No log 2.86 5 7.9306 0.0980
No log 4.0 7 7.7713 0.0980
No log 4.57 8 7.6511 0.0980
7.7785 5.71 10 7.3653 0.0980
7.7785 6.86 12 7.0246 0.0980
7.7785 8.0 14 6.6413 0.0980
7.7785 8.57 15 6.4670 0.0980
7.7785 9.71 17 6.1321 0.0980
7.7785 10.86 19 5.8360 0.0980
6.5357 12.0 21 5.5743 0.0980
6.5357 12.57 22 5.4552 0.0980
6.5357 13.71 24 5.2367 0.0980
6.5357 14.86 26 5.0418 0.0980
6.5357 16.0 28 4.8706 0.0980
6.5357 16.57 29 4.7939 0.0980
5.2494 17.71 31 4.6596 0.0980
5.2494 18.86 33 4.5508 0.0980
5.2494 20.0 35 4.4676 0.0980
5.2494 20.57 36 4.4356 0.0980
5.2494 21.71 38 4.3906 0.0980
4.5614 22.86 40 4.3714 0.0980

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0