Edit model card

llama2-docsum-adapter

This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4782

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.71 0.4 200 1.4977
1.7529 0.8 400 1.4883
1.1946 1.2 600 1.4800
1.6962 1.6 800 1.4786
1.1067 2.0 1000 1.4782

Framework versions

  • PEFT 0.13.1.dev0
  • Transformers 4.44.2
  • Pytorch 2.4.0
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for AvniMittal13/llama2-docsum-adapter

Base model

microsoft/phi-2
Adapter
(636)
this model