File size: 1,599 Bytes
3e49a24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d4a343
3e49a24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d4a343
3e49a24
 
 
 
 
 
 
 
 
 
4d4a343
 
 
 
 
 
 
3e49a24
 
 
 
 
4d4a343
 
3e49a24
4d4a343
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
base_model: microsoft/phi-2
library_name: peft
license: mit
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: llama2-docsum-adapter
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# llama2-docsum-adapter

This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4782

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.71          | 0.4   | 200  | 1.4977          |
| 1.7529        | 0.8   | 400  | 1.4883          |
| 1.1946        | 1.2   | 600  | 1.4800          |
| 1.6962        | 1.6   | 800  | 1.4786          |
| 1.1067        | 2.0   | 1000 | 1.4782          |


### Framework versions

- PEFT 0.13.1.dev0
- Transformers 4.44.2
- Pytorch 2.4.0
- Datasets 3.0.0
- Tokenizers 0.19.1