metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vc-bantai-vit-withoutAMBI-adunest-v1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
args: Violation-Classification---Raw-6
metrics:
- name: Accuracy
type: accuracy
value: 0.9181222707423581
vc-bantai-vit-withoutAMBI-adunest-v1
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3318
- Accuracy: 0.9181
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 200
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.23 | 100 | 0.3365 | 0.8581 |
No log | 0.45 | 200 | 0.3552 | 0.8472 |
No log | 0.68 | 300 | 0.3165 | 0.8581 |
No log | 0.91 | 400 | 0.2882 | 0.8690 |
0.3813 | 1.13 | 500 | 0.2825 | 0.8745 |
0.3813 | 1.36 | 600 | 0.2686 | 0.9007 |
0.3813 | 1.59 | 700 | 0.2381 | 0.9017 |
0.3813 | 1.81 | 800 | 0.3643 | 0.8734 |
0.3813 | 2.04 | 900 | 0.2873 | 0.8930 |
0.2736 | 2.27 | 1000 | 0.2236 | 0.9039 |
0.2736 | 2.49 | 1100 | 0.2652 | 0.8723 |
0.2736 | 2.72 | 1200 | 0.2793 | 0.8952 |
0.2736 | 2.95 | 1300 | 0.2158 | 0.8974 |
0.2736 | 3.17 | 1400 | 0.2410 | 0.8886 |
0.2093 | 3.4 | 1500 | 0.2262 | 0.9017 |
0.2093 | 3.63 | 1600 | 0.2110 | 0.9214 |
0.2093 | 3.85 | 1700 | 0.2048 | 0.9138 |
0.2093 | 4.08 | 1800 | 0.2044 | 0.9127 |
0.2093 | 4.31 | 1900 | 0.2591 | 0.9007 |
0.1764 | 4.54 | 2000 | 0.2466 | 0.8952 |
0.1764 | 4.76 | 2100 | 0.2554 | 0.9017 |
0.1764 | 4.99 | 2200 | 0.2145 | 0.9203 |
0.1764 | 5.22 | 2300 | 0.3187 | 0.9039 |
0.1764 | 5.44 | 2400 | 0.3336 | 0.9050 |
0.1454 | 5.67 | 2500 | 0.2542 | 0.9127 |
0.1454 | 5.9 | 2600 | 0.2796 | 0.8952 |
0.1454 | 6.12 | 2700 | 0.2410 | 0.9181 |
0.1454 | 6.35 | 2800 | 0.2503 | 0.9148 |
0.1454 | 6.58 | 2900 | 0.2966 | 0.8996 |
0.1216 | 6.8 | 3000 | 0.1978 | 0.9312 |
0.1216 | 7.03 | 3100 | 0.2297 | 0.9214 |
0.1216 | 7.26 | 3200 | 0.2768 | 0.9203 |
0.1216 | 7.48 | 3300 | 0.3356 | 0.9083 |
0.1216 | 7.71 | 3400 | 0.3415 | 0.9138 |
0.1038 | 7.94 | 3500 | 0.2398 | 0.9061 |
0.1038 | 8.16 | 3600 | 0.3347 | 0.8963 |
0.1038 | 8.39 | 3700 | 0.2199 | 0.9203 |
0.1038 | 8.62 | 3800 | 0.2943 | 0.9061 |
0.1038 | 8.84 | 3900 | 0.2561 | 0.9181 |
0.0925 | 9.07 | 4000 | 0.4170 | 0.8777 |
0.0925 | 9.3 | 4100 | 0.3638 | 0.8974 |
0.0925 | 9.52 | 4200 | 0.3233 | 0.9094 |
0.0925 | 9.75 | 4300 | 0.3496 | 0.9203 |
0.0925 | 9.98 | 4400 | 0.3621 | 0.8996 |
0.0788 | 10.2 | 4500 | 0.3260 | 0.9116 |
0.0788 | 10.43 | 4600 | 0.3979 | 0.9061 |
0.0788 | 10.66 | 4700 | 0.3301 | 0.8974 |
0.0788 | 10.88 | 4800 | 0.2197 | 0.9105 |
0.0788 | 11.11 | 4900 | 0.3306 | 0.9148 |
0.0708 | 11.34 | 5000 | 0.3318 | 0.9181 |
Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1