AykeeSalazar's picture
update model card README.md
fd6dec2
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vc-bantai-vit-withoutAMBI-adunest-v1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          args: Violation-Classification---Raw-6
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9181222707423581

vc-bantai-vit-withoutAMBI-adunest-v1

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3318
  • Accuracy: 0.9181

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.23 100 0.3365 0.8581
No log 0.45 200 0.3552 0.8472
No log 0.68 300 0.3165 0.8581
No log 0.91 400 0.2882 0.8690
0.3813 1.13 500 0.2825 0.8745
0.3813 1.36 600 0.2686 0.9007
0.3813 1.59 700 0.2381 0.9017
0.3813 1.81 800 0.3643 0.8734
0.3813 2.04 900 0.2873 0.8930
0.2736 2.27 1000 0.2236 0.9039
0.2736 2.49 1100 0.2652 0.8723
0.2736 2.72 1200 0.2793 0.8952
0.2736 2.95 1300 0.2158 0.8974
0.2736 3.17 1400 0.2410 0.8886
0.2093 3.4 1500 0.2262 0.9017
0.2093 3.63 1600 0.2110 0.9214
0.2093 3.85 1700 0.2048 0.9138
0.2093 4.08 1800 0.2044 0.9127
0.2093 4.31 1900 0.2591 0.9007
0.1764 4.54 2000 0.2466 0.8952
0.1764 4.76 2100 0.2554 0.9017
0.1764 4.99 2200 0.2145 0.9203
0.1764 5.22 2300 0.3187 0.9039
0.1764 5.44 2400 0.3336 0.9050
0.1454 5.67 2500 0.2542 0.9127
0.1454 5.9 2600 0.2796 0.8952
0.1454 6.12 2700 0.2410 0.9181
0.1454 6.35 2800 0.2503 0.9148
0.1454 6.58 2900 0.2966 0.8996
0.1216 6.8 3000 0.1978 0.9312
0.1216 7.03 3100 0.2297 0.9214
0.1216 7.26 3200 0.2768 0.9203
0.1216 7.48 3300 0.3356 0.9083
0.1216 7.71 3400 0.3415 0.9138
0.1038 7.94 3500 0.2398 0.9061
0.1038 8.16 3600 0.3347 0.8963
0.1038 8.39 3700 0.2199 0.9203
0.1038 8.62 3800 0.2943 0.9061
0.1038 8.84 3900 0.2561 0.9181
0.0925 9.07 4000 0.4170 0.8777
0.0925 9.3 4100 0.3638 0.8974
0.0925 9.52 4200 0.3233 0.9094
0.0925 9.75 4300 0.3496 0.9203
0.0925 9.98 4400 0.3621 0.8996
0.0788 10.2 4500 0.3260 0.9116
0.0788 10.43 4600 0.3979 0.9061
0.0788 10.66 4700 0.3301 0.8974
0.0788 10.88 4800 0.2197 0.9105
0.0788 11.11 4900 0.3306 0.9148
0.0708 11.34 5000 0.3318 0.9181

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0+cu113
  • Datasets 2.3.2
  • Tokenizers 0.12.1