|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: vc-bantai-vit-withoutAMBI-adunest-v3 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
args: Violation-Classification---Raw-10 |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8218352310783658 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# vc-bantai-vit-withoutAMBI-adunest-v3 |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8889 |
|
- Accuracy: 0.8218 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 200 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 0.38 | 100 | 0.8208 | 0.7147 | |
|
| No log | 0.76 | 200 | 0.8861 | 0.7595 | |
|
| No log | 1.14 | 300 | 0.4306 | 0.7910 | |
|
| No log | 1.52 | 400 | 0.5222 | 0.8245 | |
|
| 0.3448 | 1.9 | 500 | 0.8621 | 0.7602 | |
|
| 0.3448 | 2.28 | 600 | 0.2902 | 0.8801 | |
|
| 0.3448 | 2.66 | 700 | 0.3687 | 0.8426 | |
|
| 0.3448 | 3.04 | 800 | 0.3585 | 0.8694 | |
|
| 0.3448 | 3.42 | 900 | 0.6546 | 0.7897 | |
|
| 0.2183 | 3.8 | 1000 | 0.3881 | 0.8272 | |
|
| 0.2183 | 4.18 | 1100 | 0.9650 | 0.7709 | |
|
| 0.2183 | 4.56 | 1200 | 0.6444 | 0.7917 | |
|
| 0.2183 | 4.94 | 1300 | 0.4685 | 0.8707 | |
|
| 0.2183 | 5.32 | 1400 | 0.4972 | 0.8506 | |
|
| 0.157 | 5.7 | 1500 | 0.4010 | 0.8513 | |
|
| 0.157 | 6.08 | 1600 | 0.4629 | 0.8419 | |
|
| 0.157 | 6.46 | 1700 | 0.4258 | 0.8714 | |
|
| 0.157 | 6.84 | 1800 | 0.4383 | 0.8573 | |
|
| 0.157 | 7.22 | 1900 | 0.5324 | 0.8493 | |
|
| 0.113 | 7.6 | 2000 | 0.3212 | 0.8942 | |
|
| 0.113 | 7.98 | 2100 | 0.8621 | 0.8326 | |
|
| 0.113 | 8.37 | 2200 | 0.6050 | 0.8131 | |
|
| 0.113 | 8.75 | 2300 | 0.7173 | 0.7991 | |
|
| 0.113 | 9.13 | 2400 | 0.5313 | 0.8125 | |
|
| 0.0921 | 9.51 | 2500 | 0.6584 | 0.8158 | |
|
| 0.0921 | 9.89 | 2600 | 0.8727 | 0.7930 | |
|
| 0.0921 | 10.27 | 2700 | 0.4222 | 0.8922 | |
|
| 0.0921 | 10.65 | 2800 | 0.5811 | 0.8265 | |
|
| 0.0921 | 11.03 | 2900 | 0.6175 | 0.8372 | |
|
| 0.0701 | 11.41 | 3000 | 0.3914 | 0.8835 | |
|
| 0.0701 | 11.79 | 3100 | 0.3364 | 0.8654 | |
|
| 0.0701 | 12.17 | 3200 | 0.6223 | 0.8359 | |
|
| 0.0701 | 12.55 | 3300 | 0.7830 | 0.8125 | |
|
| 0.0701 | 12.93 | 3400 | 0.4356 | 0.8942 | |
|
| 0.0552 | 13.31 | 3500 | 0.7553 | 0.8232 | |
|
| 0.0552 | 13.69 | 3600 | 0.9107 | 0.8292 | |
|
| 0.0552 | 14.07 | 3700 | 0.6108 | 0.8580 | |
|
| 0.0552 | 14.45 | 3800 | 0.5732 | 0.8567 | |
|
| 0.0552 | 14.83 | 3900 | 0.5087 | 0.8614 | |
|
| 0.0482 | 15.21 | 4000 | 0.8889 | 0.8218 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.1 |
|
- Pytorch 1.12.0+cu113 |
|
- Datasets 2.3.2 |
|
- Tokenizers 0.12.1 |
|
|