English | 简体中文
We opensource our Aquila2 series, now including Aquila2, the base language models, namely Aquila2-7B and Aquila2-34B, as well as AquilaChat2, the chat models, namely AquilaChat2-7B and AquilaChat2-34B, as well as the long-text chat models, namely AquilaChat2-7B-16k and AquilaChat2-34B-16k
The additional details of the Aquila model will be presented in the official technical report. Please stay tuned for updates on official channels.
Quick Start AquilaChat2-7B-16K(Chat model)
1. Inference
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import BitsAndBytesConfig
device = torch.device("cuda:0")
model_info = "BAAI/AquilaChat2-7B-16K"
tokenizer = AutoTokenizer.from_pretrained(model_info, trust_remote_code=True)
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
model = AutoModelForCausalLM.from_pretrained(model_info, trust_remote_code=True, torch_dtype=torch.float16,
# quantization_config=quantization_config, # Uncomment this line for 4bit quantization
)
model.eval()
model.to(device)
text = "请给出10个要到北京旅游的理由。"
from predict import predict
out = predict(model, text, tokenizer=tokenizer, max_gen_len=200, top_p=0.95,
seed=1234, topk=100, temperature=0.9, sft=True, device=device,
model_name="AquilaChat2-7B-16K")
print(out)
License
Aquila2 series open-source model is licensed under BAAI Aquila Model Licence Agreement
- Downloads last month
- 64
Inference API (serverless) does not yet support model repos that contain custom code.