Resnet101 pretrained on BigEarthNet v2.0 using Sentinel-2 bands
This model was trained on the BigEarthNet v2.0 (also known as reBEN) dataset using the Sentinel-2 bands. It was trained using the following parameters:
- Number of epochs: up to 100 (with early stopping after 5 epochs of no improvement based on validation average precision macro)
- Batch size: 512
- Learning rate: 0.001
- Dropout rate: 0.15
- Drop Path rate: 0.15
- Learning rate scheduler: LinearWarmupCosineAnnealing for 1000 warmup steps
- Optimizer: AdamW
- Seed: 24
The weights published in this model card were obtained after 15 training epochs. For more information, please visit the official BigEarthNet v2.0 (reBEN) repository, where you can find the training scripts.
The model was evaluated on the test set of the BigEarthNet v2.0 dataset with the following results:
Metric | Macro | Micro |
---|---|---|
Average Precision | 0.708653 | 0.861307 |
F1 Score | 0.637938 | 0.758940 |
Precision | 0.746407 | 0.810672 |
Example
Class labels | Predicted scores |
---|---|
Agro-forestry areas |
0.000000 |
To use the model, download the codes that define the model architecture from the
official BigEarthNet v2.0 (reBEN) repository and load the model using the
code below. Note that you have to install configilm
to use the provided code.
from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier
model = BigEarthNetv2_0_ImageClassifier.from_pretrained("path_to/huggingface_model_folder")
e.g.
from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier
model = BigEarthNetv2_0_ImageClassifier.from_pretrained(
"BIFOLD-BigEarthNetv2-0/resnet101-s2-v0.1.1")
If you use this model in your research or the provided code, please cite the following papers:
CITATION FOR DATASET PAPER
@article{hackel2024configilm,
title={ConfigILM: A general purpose configurable library for combining image and language models for visual question answering},
author={Hackel, Leonard and Clasen, Kai Norman and Demir, Beg{\"u}m},
journal={SoftwareX},
volume={26},
pages={101731},
year={2024},
publisher={Elsevier}
}
- Downloads last month
- 13