BTX24's picture
End of training
3979ff7 verified
metadata
license: apache-2.0
base_model: facebook/convnextv2-base-22k-224
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: convnextv2-base-22k-224-finetuned-tekno24
    results: []

convnextv2-base-22k-224-finetuned-tekno24

This model is a fine-tuned version of facebook/convnextv2-base-22k-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9781
  • Accuracy: 0.5748
  • F1: 0.5697
  • Precision: 0.5822
  • Recall: 0.5748

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 12
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.2643 0.9951 102 1.1487 0.5207 0.4764 0.4783 0.5207
1.1889 2.0 205 1.1038 0.5087 0.5191 0.5565 0.5087
1.215 2.9951 307 1.0810 0.4830 0.4795 0.5589 0.4830
1.1062 4.0 410 1.0103 0.5620 0.5281 0.5358 0.5620
1.089 4.9951 512 1.0459 0.5344 0.5440 0.5720 0.5344
1.0335 6.0 615 0.9781 0.5748 0.5697 0.5822 0.5748
1.0139 6.9951 717 0.9905 0.5592 0.5605 0.5625 0.5592
0.9047 8.0 820 0.9877 0.5629 0.5525 0.5482 0.5629
0.8856 8.9951 922 1.0060 0.5565 0.5569 0.5593 0.5565
0.8306 10.0 1025 0.9907 0.5666 0.5574 0.5531 0.5666
0.8458 10.9951 1127 1.0135 0.5500 0.5489 0.5506 0.5500
0.815 11.9415 1224 1.0185 0.5491 0.5520 0.5558 0.5491

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1