metadata
license: apache-2.0
base_model: facebook/convnextv2-tiny-1k-224
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: convnextv2-tiny-1k-224-finetuned-four-five
results: []
convnextv2-tiny-1k-224-finetuned-four-five
This model is a fine-tuned version of facebook/convnextv2-tiny-1k-224 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6029
- Accuracy: 0.6544
- F1: 0.6540
- Precision: 0.6564
- Recall: 0.6544
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.7064 | 0.9455 | 13 | 0.7007 | 0.5023 | 0.3813 | 0.4662 | 0.5023 |
0.6997 | 1.9636 | 27 | 0.6937 | 0.5276 | 0.4406 | 0.6010 | 0.5276 |
0.6895 | 2.9818 | 41 | 0.6864 | 0.5276 | 0.4815 | 0.5549 | 0.5276 |
0.6862 | 4.0 | 55 | 0.6769 | 0.5922 | 0.5887 | 0.5983 | 0.5922 |
0.6745 | 4.9455 | 68 | 0.6455 | 0.6336 | 0.6336 | 0.6344 | 0.6336 |
0.6443 | 5.9636 | 82 | 0.6340 | 0.6406 | 0.6399 | 0.6406 | 0.6406 |
0.6243 | 6.9818 | 96 | 0.6220 | 0.6590 | 0.6534 | 0.6661 | 0.6590 |
0.6243 | 8.0 | 110 | 0.6151 | 0.6705 | 0.6668 | 0.6754 | 0.6705 |
0.6248 | 8.9455 | 123 | 0.6104 | 0.6567 | 0.6565 | 0.6566 | 0.6567 |
0.6149 | 9.9636 | 137 | 0.6100 | 0.6751 | 0.6734 | 0.6816 | 0.6751 |
0.5968 | 10.9818 | 151 | 0.6026 | 0.6705 | 0.6705 | 0.6713 | 0.6705 |
0.5813 | 12.0 | 165 | 0.6028 | 0.6590 | 0.6589 | 0.6602 | 0.6590 |
0.5892 | 12.9455 | 178 | 0.6059 | 0.6452 | 0.6420 | 0.6537 | 0.6452 |
0.5738 | 13.9636 | 192 | 0.6029 | 0.6544 | 0.6541 | 0.6561 | 0.6544 |
0.5738 | 14.1818 | 195 | 0.6029 | 0.6544 | 0.6540 | 0.6564 | 0.6544 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1