BTX24's picture
Model save
4d5164b verified
metadata
license: apache-2.0
base_model: facebook/convnextv2-tiny-1k-224
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: convnextv2-tiny-1k-224-finetuned-four-five
    results: []

convnextv2-tiny-1k-224-finetuned-four-five

This model is a fine-tuned version of facebook/convnextv2-tiny-1k-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6029
  • Accuracy: 0.6544
  • F1: 0.6540
  • Precision: 0.6564
  • Recall: 0.6544

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.7064 0.9455 13 0.7007 0.5023 0.3813 0.4662 0.5023
0.6997 1.9636 27 0.6937 0.5276 0.4406 0.6010 0.5276
0.6895 2.9818 41 0.6864 0.5276 0.4815 0.5549 0.5276
0.6862 4.0 55 0.6769 0.5922 0.5887 0.5983 0.5922
0.6745 4.9455 68 0.6455 0.6336 0.6336 0.6344 0.6336
0.6443 5.9636 82 0.6340 0.6406 0.6399 0.6406 0.6406
0.6243 6.9818 96 0.6220 0.6590 0.6534 0.6661 0.6590
0.6243 8.0 110 0.6151 0.6705 0.6668 0.6754 0.6705
0.6248 8.9455 123 0.6104 0.6567 0.6565 0.6566 0.6567
0.6149 9.9636 137 0.6100 0.6751 0.6734 0.6816 0.6751
0.5968 10.9818 151 0.6026 0.6705 0.6705 0.6713 0.6705
0.5813 12.0 165 0.6028 0.6590 0.6589 0.6602 0.6590
0.5892 12.9455 178 0.6059 0.6452 0.6420 0.6537 0.6452
0.5738 13.9636 192 0.6029 0.6544 0.6541 0.6561 0.6544
0.5738 14.1818 195 0.6029 0.6544 0.6540 0.6564 0.6544

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1