Edit model card

checkpoints_2

This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8543
  • Map@3: 0.7167

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Map@3
1.395 0.19 25 1.3859 0.5889
1.3803 0.37 50 1.3840 0.6958
1.3842 0.56 75 1.3314 0.7194
1.2795 0.74 100 1.0021 0.7222
0.9662 0.93 125 0.9006 0.6597
0.9574 1.11 150 0.8355 0.6903
0.8909 1.3 175 0.8506 0.6750
0.8077 1.48 200 0.8180 0.7125
0.955 1.67 225 0.8069 0.7097
0.8664 1.85 250 0.8186 0.7028
0.9396 2.04 275 0.8091 0.6986
0.8141 2.22 300 0.8212 0.7083
0.7898 2.41 325 0.8531 0.7167
0.9143 2.59 350 0.8482 0.7125
0.8861 2.78 375 0.8229 0.7083
0.8569 2.96 400 0.8372 0.7181
0.8381 3.15 425 0.8516 0.7153
0.7671 3.33 450 0.8458 0.7167
0.8704 3.52 475 0.8651 0.7222
0.8733 3.7 500 0.8356 0.7153
0.7309 3.89 525 0.8476 0.7181
0.7793 4.07 550 0.8566 0.7167
0.7849 4.26 575 0.8644 0.7167
0.7776 4.44 600 0.8584 0.7167
0.7573 4.63 625 0.8546 0.7167
0.8115 4.81 650 0.8543 0.7167
0.869 5.0 675 0.8543 0.7167

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.14.1
Downloads last month
3
Safetensors
Model size
435M params
Tensor type
F32
·
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for BachNgoH/checkpoints_2

Finetuned
(116)
this model