BahAdoR0101's picture
End of training
dc1a6c2
|
raw
history blame
2.13 kB
metadata
license: mit
base_model: dslim/bert-large-NER
tags:
  - generated_from_trainer
datasets:
  - job-titles
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: my_awesome_wnut_model
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: job-titles
          type: job-titles
          config: job-titles
          split: test
          args: job-titles
        metrics:
          - name: Precision
            type: precision
            value: 0.9992003198720512
          - name: Recall
            type: recall
            value: 0.9996
          - name: F1
            type: f1
            value: 0.9994001199760049
          - name: Accuracy
            type: accuracy
            value: 0.6346958244661334

my_awesome_wnut_model

This model is a fine-tuned version of dslim/bert-large-NER on the job-titles dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6603
  • Precision: 0.9992
  • Recall: 0.9996
  • F1: 0.9994
  • Accuracy: 0.6347

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.6666 1.0 4587 0.6615 1.0 1.0 1.0 0.6331
0.6617 2.0 9174 0.6603 0.9992 0.9996 0.9994 0.6347

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1