|
--- |
|
license: mit |
|
base_model: facebook/w2v-bert-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: w2v-bert-2.0-malayalam_mixeddataset_thre |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# w2v-bert-2.0-malayalam_mixeddataset_thre |
|
|
|
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1604 |
|
- Wer: 0.1244 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:| |
|
| 1.1974 | 0.47 | 600 | 0.3732 | 0.4971 | |
|
| 0.1677 | 0.95 | 1200 | 0.2552 | 0.3411 | |
|
| 0.1229 | 1.42 | 1800 | 0.2184 | 0.3123 | |
|
| 0.1041 | 1.9 | 2400 | 0.2044 | 0.2921 | |
|
| 0.0825 | 2.37 | 3000 | 0.2150 | 0.2667 | |
|
| 0.0756 | 2.85 | 3600 | 0.1882 | 0.2361 | |
|
| 0.0627 | 3.32 | 4200 | 0.1735 | 0.2493 | |
|
| 0.0557 | 3.8 | 4800 | 0.1653 | 0.2117 | |
|
| 0.0454 | 4.27 | 5400 | 0.1669 | 0.1891 | |
|
| 0.0394 | 4.74 | 6000 | 0.1610 | 0.1903 | |
|
| 0.0363 | 5.22 | 6600 | 0.1654 | 0.1699 | |
|
| 0.0278 | 5.69 | 7200 | 0.1465 | 0.1640 | |
|
| 0.025 | 6.17 | 7800 | 0.1503 | 0.1617 | |
|
| 0.0198 | 6.64 | 8400 | 0.1429 | 0.1466 | |
|
| 0.0174 | 7.12 | 9000 | 0.1440 | 0.1453 | |
|
| 0.013 | 7.59 | 9600 | 0.1496 | 0.1433 | |
|
| 0.0125 | 8.07 | 10200 | 0.1465 | 0.1274 | |
|
| 0.0076 | 8.54 | 10800 | 0.1479 | 0.1349 | |
|
| 0.0076 | 9.02 | 11400 | 0.1521 | 0.1229 | |
|
| 0.0041 | 9.49 | 12000 | 0.1600 | 0.1291 | |
|
| 0.0038 | 9.96 | 12600 | 0.1604 | 0.1244 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.1.1+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.1 |
|
|