metadata
base_model: facebook/w2v-bert-2.0
license: mit
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: w2v-bert-2.0-nonstudio_and_studioRecords_final
results: []
w2v-bert-2.0-nonstudio_and_studioRecords_final
This model is a fine-tuned version of facebook/w2v-bert-2.0 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1772
- Wer: 0.1266
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.055 | 0.4601 | 600 | 0.3683 | 0.4608 |
0.1734 | 0.9202 | 1200 | 0.2620 | 0.3546 |
0.1242 | 1.3804 | 1800 | 0.2115 | 0.3018 |
0.1075 | 1.8405 | 2400 | 0.2004 | 0.2889 |
0.0888 | 2.3006 | 3000 | 0.1870 | 0.2573 |
0.078 | 2.7607 | 3600 | 0.1724 | 0.2267 |
0.0664 | 3.2209 | 4200 | 0.1572 | 0.2244 |
0.0576 | 3.6810 | 4800 | 0.1746 | 0.2217 |
0.0522 | 4.1411 | 5400 | 0.1643 | 0.1796 |
0.0415 | 4.6012 | 6000 | 0.1781 | 0.1851 |
0.0398 | 5.0613 | 6600 | 0.1670 | 0.1714 |
0.0301 | 5.5215 | 7200 | 0.1531 | 0.1617 |
0.0296 | 5.9816 | 7800 | 0.1463 | 0.1590 |
0.0211 | 6.4417 | 8400 | 0.1566 | 0.1473 |
0.0206 | 6.9018 | 9000 | 0.1423 | 0.1468 |
0.0147 | 7.3620 | 9600 | 0.1443 | 0.1413 |
0.0136 | 7.8221 | 10200 | 0.1539 | 0.1418 |
0.0105 | 8.2822 | 10800 | 0.1611 | 0.1383 |
0.0079 | 8.7423 | 11400 | 0.1761 | 0.1351 |
0.0063 | 9.2025 | 12000 | 0.1814 | 0.1304 |
0.0043 | 9.6626 | 12600 | 0.1772 | 0.1266 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1