bert-base-multilingual-uncased-mongolian-ner
This model is a fine-tuned version of bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1378
- Precision: 0.9094
- Recall: 0.9227
- F1: 0.9160
- Accuracy: 0.9758
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.1758 | 1.0 | 477 | 0.1095 | 0.8593 | 0.8850 | 0.8720 | 0.9648 |
0.0863 | 2.0 | 954 | 0.1019 | 0.8855 | 0.9055 | 0.8954 | 0.9718 |
0.0601 | 3.0 | 1431 | 0.1063 | 0.8950 | 0.9086 | 0.9018 | 0.9724 |
0.04 | 4.0 | 1908 | 0.1050 | 0.8988 | 0.9171 | 0.9078 | 0.9745 |
0.0289 | 5.0 | 2385 | 0.1085 | 0.9003 | 0.9185 | 0.9093 | 0.9751 |
0.0203 | 6.0 | 2862 | 0.1134 | 0.9052 | 0.9193 | 0.9122 | 0.9747 |
0.0139 | 7.0 | 3339 | 0.1314 | 0.9089 | 0.9185 | 0.9137 | 0.9746 |
0.0102 | 8.0 | 3816 | 0.1306 | 0.9087 | 0.9199 | 0.9143 | 0.9748 |
0.0072 | 9.0 | 4293 | 0.1339 | 0.9091 | 0.9229 | 0.9160 | 0.9758 |
0.005 | 10.0 | 4770 | 0.1378 | 0.9094 | 0.9227 | 0.9160 | 0.9758 |
Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.