Barani1-t's picture
End of training
f09ad35
metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - gtzan
metrics:
  - accuracy
model-index:
  - name: whisper-tiny-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: gtzan
          type: gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.865

whisper-tiny-finetuned-gtzan

This model is a fine-tuned version of openai/whisper-tiny on the gtzan dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5357
  • Accuracy: 0.865

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Accuracy Validation Loss
1.8988 1.0 50 0.475 1.8064
1.2155 2.0 100 0.66 1.2221
0.9136 3.0 150 0.76 0.9259
0.7999 4.0 200 0.8 0.7412
0.4499 5.0 250 0.785 0.6758
0.2986 6.0 300 0.845 0.5601
0.2432 7.0 350 0.825 0.5678
0.1316 8.0 400 0.845 0.5153
0.1685 9.0 450 0.86 0.4840
0.1344 10.0 500 0.86 0.4803
0.0499 11.0 550 0.5167 0.855
0.0969 12.0 600 0.5370 0.85
0.0351 13.0 650 0.5022 0.86
0.0452 14.0 700 0.5289 0.855
0.0167 15.0 750 0.5357 0.865

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1