{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x000001909456E980>", "_build": "<function DQNPolicy._build at 0x000001909456EA20>", "make_q_net": "<function DQNPolicy.make_q_net at 0x000001909456EAC0>", "forward": "<function DQNPolicy.forward at 0x000001909456EB60>", "_predict": "<function DQNPolicy._predict at 0x000001909456EC00>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x000001909456ECA0>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x000001909456ED40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x0000019092F37200>"}, "verbose": 1, "policy_kwargs": {"net_arch": [256, 256]}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718973961012800200, "learning_rate": 0.0001, "tensorboard_log": "./dqn_lunarlander_tensorboard/", "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADMbV7th3aY/0RQ6vRd4/75LO9o9VulpPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAM3cQLuwTKg/JZpovaI+8r6118I9HpKMPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_episode_num": 2181, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+6WEkB0ZGMAWyUTToBjAF0lEdApHajCSA6MnV9lChoBkdAcLsxqO938mgHS/5oCEdApHgxFCswL3V9lChoBkdAb+uAjps41mgHTXoBaAhHQKR6aJPZZjh1fZQoaAZHQGuPeERJ2+xoB00WAWgIR0CkfBFERaoudX2UKGgGR0Bx6YqmTC+DaAdNGwFoCEdApH2/LJSzgXV9lChoBkdAblKxMWXTmWgHTVEBaAhHQKR/xAHE/B51fZQoaAZHQG1rki+tbLVoB00eAWgIR0CkgV9Lg4wRdX2UKGgGR0BwDNd4VymzaAdL/GgIR0Ckgs588cMmdX2UKGgGR0Bx9KYOUdJbaAdNDgFoCEdApIRkxj8UEnV9lChoBkdAa3nK7qY7aWgHTVEBaAhHQKSGZ9v0h/11fZQoaAZHQHCj1F+d9UloB02RAWgIR0CkiKfx2B8QdX2UKGgGR0BsoJeZ5Rj0aAdNRgFoCEdApIp6B/Zuh3V9lChoBkdAbt4tQKrq+2gHTX8BaAhHQKSMo9gWrOt1fZQoaAZHQHFtaLOzIFNoB013AWgIR0CkjsLcCYCydX2UKGgGR0ByXJ3Y+Sr6aAdNcQFoCEdApJDmReTmn3V9lChoBkdAcLhKqn3tbGgHTWgBaAhHQKSS8b83uNR1fZQoaAZHQHINkaVD8cdoB00hAWgIR0CklMLylN1ydX2UKGgGR0BtWnFPznRtaAdNUAFoCEdApJbcKRdQf3V9lChoBkdAbTniVB2OhmgHTXUBaAhHQKSZLayKNyZ1fZQoaAZHQG/T9Gqgh8poB01eAWgIR0Ckmz0IcBEKdX2UKGgGR0BwdBLuhK15aAdNRgFoCEdApJ0SubI91XV9lChoBkdAbbARWcSXdGgHTWwBaAhHQKSfLkhA4XJ1fZQoaAZHQG/SXRoh6jZoB01YAWgIR0CkoRqmTC+DdX2UKGgGR0BvryxC6YmcaAdNBgFoCEdApKKTrLQokXV9lChoBkdAcLmvsZ5zHWgHTY8BaAhHQKSk6i8nNPh1fZQoaAZHQG6az1bqyGBoB00VAWgIR0CkpnupjtojdX2UKGgGR0Bvz0jFAE+xaAdNFQFoCEdApKgTfHggo3V9lChoBkdAcaBA9V3ljmgHTYEBaAhHQKSqevECNjt1fZQoaAZHQHFEurIYFaBoB00dAWgIR0CkrCA9mpVCdX2UKGgGR0Bu4JOSGJvYaAdNWQFoCEdApK4uAZsKs3V9lChoBkdAbt5Yoy9EkWgHTXYBaAhHQKSwUup0fYB1fZQoaAZHQEkbrv9cbBJoB0u3aAhHQKSxZDhtLth1fZQoaAZHQHKt+Idlum9oB01BAWgIR0Ckszvo3aSLdX2UKGgGR0BwMQXMyJsPaAdNdgFoCEdApLWJjUd7wHV9lChoBkdAcDM/b0voNmgHTSwBaAhHQKS3UNrCWNZ1fZQoaAZHQGw/EAYHgP5oB01+AWgIR0CkuXtxEORUdX2UKGgGR0BwGc7+1jRVaAdNJgFoCEdApLsmoBJZn3V9lChoBkdAcS20h/y5JGgHTYgBaAhHQKS9aGBWge11fZQoaAZHQG/K88TzundoB00oAWgIR0CkvxfuTibVdX2UKGgGR0Bv0B40Mw10aAdNqAFoCEdApMFyqp97W3V9lChoBkdAcuYD7qIJq2gHTTsBaAhHQKTDMz544ZN1fZQoaAZHQG9R0B4lhPVoB004AWgIR0CkxPqPfbbldX2UKGgGR0ButmCuloDgaAdL6mgIR0CkxlBuXNTtdX2UKGgGR0BwCcIRh+fAaAdNDAFoCEdApMf6T2WY4XV9lChoBkdAcC2dfsu3+mgHTWQBaAhHQKTKCdZJTVF1fZQoaAZHQHNCkEcKgI1oB00cAWgIR0Cky7dwvQF+dX2UKGgGR0Bw/RQuVX3haAdL/GgIR0CkzUX7Lt/ndX2UKGgGR0Bvf0AmzBykaAdNewFoCEdApM+ORFI/aHV9lChoBkdAUrooXsPatmgHS51oCEdApNB+s5n14HV9lChoBkdAcUaq1w5vL2gHTe0BaAhHQKTTa11GLDR1fZQoaAZHQHCk2S6lLvloB00hAWgIR0Ck1RhZyMkydX2UKGgGR0BudLyYoiLVaAdNHAFoCEdApNaw6ltTDXV9lChoBkdAb4AJGe+VT2gHTb8BaAhHQKTZM6dUbUB1fZQoaAZHQHEcMtTUAktoB013AWgIR0Ck22OB19v1dX2UKGgGR0BvJqEFnqVyaAdNeAJoCEdApN8zTfBN23V9lChoBkdAcjoHe7+T/2gHTWIBaAhHQKThXpoK2KF1fZQoaAZHQHCif9tMwlBoB03hAWgIR0Ck5Evdl/YrdX2UKGgGR0BwpsyN4qwyaAdNYQFoCEdApOZ3IQvpQnV9lChoBkdAcelOTq0MPWgHTWsBaAhHQKTol4+r2g51fZQoaAZHQHLRQa3qiXZoB039AWgIR0Ck662jfvWpdX2UKGgGR0BxcfBInSfEaAdNHQFoCEdApO1Vl2/zrnV9lChoBkdAcgxIY3vQW2gHS/xoCEdApO7i44Ia+HV9lChoBkdAcnuXkHUtqmgHTTABaAhHQKTwtLV4HHF1fZQoaAZHQHBgzfek56toB00oAWgIR0Ck8nQsoUi7dX2UKGgGR0BvxJTuOS4faAdNHwFoCEdApPQhdjXnQ3V9lChoBkdAcm2DAJswc2gHTScBaAhHQKT14k0Jng51fZQoaAZHQHA+3evZAY5oB00IAWgIR0Ck93YKhL5AdX2UKGgGR0Bt3MujASFoaAdL7mgIR0Ck+NHxSYPYdX2UKGgGR0Bv9Vie/YapaAdNwAJoCEdApP0FQTEiuHV9lChoBkdAcalX3g1m8WgHTWIBaAhHQKT/K2qkuYh1fZQoaAZHQG/PqdH2AXloB002AWgIR0ClARDZ13dLdX2UKGgGR0BxBg8cMmWuaAdNIQFoCEdApQLRLh73PHV9lChoBkdAb9ZMURFqjGgHTWoBaAhHQKUE+D3/PxB1fZQoaAZHQG+HMbFS88NoB0v5aAhHQKUGeOJcgQp1fZQoaAZHQG6FuXNTtLNoB00SAWgIR0ClCDv4mCyydX2UKGgGR0Btd3P1L8JlaAdNiQFoCEdApQqmfdyksXV9lChoBkdAb6+gJ1JUYWgHTTEBaAhHQKUMZ2bG3nZ1fZQoaAZHQG4AoMz/IbRoB00cAWgIR0ClDgcABDG+dX2UKGgGR0BwPu+oLofTaAdNZAFoCEdApRAlaB7NS3V9lChoBkdAcieQU5+6RWgHTSwBaAhHQKUR40TDfm91fZQoaAZHQHCNzNY8uBdoB01XAWgIR0ClE99Jaq0ddX2UKGgGR0BvMwlUp/gBaAdL5GgIR0ClFS6F/QSjdX2UKGgGR0BwlwZk078vaAdNOgFoCEdApRb6iwjdHnV9lChoBkdAbV1JWeYlY2gHS/5oCEdApRhjX+VC5XV9lChoBkdAbN+1E3KjjGgHTRUBaAhHQKUZ8XFcY651fZQoaAZHQEHGU34sVcloB0tiaAhHQKUadVQQ+U11fZQoaAZHQHDvjvqkdmxoB00jAWgIR0ClHBPacqe9dX2UKGgGR0Bx6Y+KTB69aAdNCwFoCEdApR2Pm9xp+XV9lChoBkdAbDqMw1zhgmgHTXABaAhHQKUf2OWjXWh1fZQoaAZHQG55dgF5fMRoB02WAWgIR0ClIkoNEw36dX2UKGgGR0By70eU6gdwaAdNDQFoCEdApSPSltTDO3V9lChoBkdAbgNPu5SWJWgHTakBaAhHQKUmQfWcz691fZQoaAZHQG4+vBacI7hoB01OAWgIR0ClKDka/ATJdX2UKGgGR0BxOo31jAi3aAdNKwFoCEdApSnxk5IYnHV9lChoBkdAbuweSSvC/GgHTagBaAhHQKUsZhAnlXB1fZQoaAZHQHB1yY1He8BoB00NAWgIR0ClLgpEx7AtdX2UKGgGR0BzG081XNkfaAdL/WgIR0ClL4zr/sE8dX2UKGgGR0ByZPeUILPVaAdNJQFoCEdApTFQcR15jnV9lChoBkdAccmyk9ECvGgHTRkBaAhHQKUzAEal1r91fZQoaAZHQHAu1j/dZaFoB008AWgIR0ClNN+o1k1/dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 249750, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVpAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooRFEZLp5NLPGrKowjFykhMkwCMA2luY5SKEO2ThFlkqPJHmM/bWK6n3yN1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpSKBV0+JJYAdWJ1Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "buffer_size": 100000, "batch_size": 64, "learning_starts": 1000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x00000190944F4E00>", "add": "<function ReplayBuffer.add at 0x00000190944F4F40>", "sample": "<function ReplayBuffer.sample at 0x00000190944F4FE0>", "_get_samples": "<function ReplayBuffer._get_samples at 0x00000190944F5080>", "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x00000190944F5120>)>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x00000190944F1000>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 1000, "_n_calls": 1000000, "max_grad_norm": 10, "exploration_rate": 0.05, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBUsTQzSVAZcAdAEAAAAAAAAAAAAAAgCJAXwApgEAAKsBAAAAAAAAAACmAQAAqwEAAAAAAAAAAFMAlE6FlIwFZmxvYXSUhZSMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxcYzpcVXNlcnNcU2FyYWhcYW5hY29uZGEzXGVudnNcZGVlcHJsX2VudlxMaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjAg8bGFtYmRhPpSMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpRLYUMa+IAApWWoTqhO0DtN0SxO1CxO0SZP1CZPgACUQwCUjA52YWx1ZV9zY2hlZHVsZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaA51Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgifZR9lChoGmgPjAxfX3F1YWxuYW1lX1+UaBCMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBuMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RoAihoByhLAUsASwBLAUsBSxNDCJUBlwCJAVMAlGgJKYwBX5SFlGgOjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhUMI+IAA2A8SiAqUaBKMA3ZhbJSFlCl0lFKUaBdOTmgeKVKUhZR0lFKUaCVoP32UfZQoaBpoNWgoaDZoKX2UaCtOaCxOaC1oG2guTmgvaDFHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMIWUUpSFlGhGXZRoSH2UdYaUhlIwLg=="}, "batch_norm_stats": [], "batch_norm_stats_target": [], "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVeQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQzyVA5cAZAF8AHoKAACJAmsEAAAAAHICiQFTAIkDZAF8AHoKAACJAYkDegoAAHoFAACJAnoLAAB6AAAAUwCUTksBhpQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMXGM6XFVzZXJzXFNhcmFoXGFuYWNvbmRhM1xlbnZzXGRlZXBybF9lbnZcTGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5RLc0M4+IAA2AwN0BAi0QwioGzSCzLQCzLYExaISuATGJhB0CAy0RwysHO4VbF70RtDwGzRG1LRE1LQDFKUQwCUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgeKVKUaB4pUpSHlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoJH2UfZQoaBpoDYwMX19xdWFsbmFtZV9flGgOjA9fX2Fubm90YXRpb25zX1+UfZQoaAqMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoL3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgbjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+pmZmZmZmahZRSlGg3Rz+5mZmZmZmahZRSlGg3Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Windows-10-10.0.22631-SP0 10.0.22631", "Python": "3.11.9", "Stable-Baselines3": "2.3.2", "PyTorch": "2.3.1+cpu", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1"}} |