YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
This is to deplicate the work of
wav2vec2-base-Speech_Emotion_Recognition
Only little changes are made for success run on google colab.
My Version of metrics:
Epoch | Training Loss | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1.789200 | 1.548816 | 0.382590 | 0.287415 | 0.382590 | 0.289045 | 0.382590 | 0.382590 | 0.379768 | 0.473585 | 0.382590 | 0.467116 |
1 | 1.789200 | 1.302810 | 0.529823 | 0.511868 | 0.529823 | 0.511619 | 0.529823 | 0.529823 | 0.523766 | 0.552868 | 0.529823 | 0.560496 |
2 | 1.789200 | 1.029921 | 0.672757 | 0.668108 | 0.672757 | 0.669246 | 0.672757 | 0.672757 | 0.676383 | 0.674857 | 0.672757 | 0.673698 |
3 | 1.789200 | 0.968154 | 0.677055 | 0.671986 | 0.677055 | 0.674074 | 0.677055 | 0.677055 | 0.676891 | 0.701300 | 0.677055 | 0.705734 |
4 | 1.789200 | 0.850912 | 0.717894 | 0.714321 | 0.717894 | 0.716527 | 0.717894 | 0.717894 | 0.722476 | 0.716772 | 0.717894 | 0.716698 |
5 | 1.789200 | 0.870916 | 0.710371 | 0.706013 | 0.710371 | 0.708563 | 0.710371 | 0.710371 | 0.713853 | 0.710966 | 0.710371 | 0.712245 |
6 | 1.789200 | 0.827148 | 0.729178 | 0.725336 | 0.729178 | 0.726744 | 0.729178 | 0.729178 | 0.732127 | 0.735935 | 0.729178 | 0.736041 |
7 | 1.789200 | 0.798354 | 0.729715 | 0.727086 | 0.729715 | 0.728847 | 0.729715 | 0.729715 | 0.732476 | 0.729932 | 0.729715 | 0.730688 |
8 | 1.789200 | 0.799373 | 0.735626 | 0.732981 | 0.735626 | 0.735058 | 0.735626 | 0.735626 | 0.738147 | 0.741482 | 0.735626 | 0.742782 |
9 | 1.789200 | 0.810692 | 0.728103 | 0.724754 | 0.728103 | 0.726852 | 0.728103 | 0.728103 | 0.731083 | 0.731919 | 0.728103 | 0.732869 |
Num examples = 1861 Batch size = 32 [59/59 08:38]
{'eval_loss': 0.8106924891471863,
'eval_accuracy': 0.7281031703385277,
'eval_Weighted F1': 0.7247543780750472,
'eval_Micro F1': 0.7281031703385277,
'eval_Macro F1': 0.7268519957485492,
'eval_Weighted Recall': 0.7281031703385277,
'eval_Micro Recall': 0.7281031703385277,
'eval_Macro Recall': 0.7310833557439055,
'eval_Weighted Precision': 0.7319188411210771,
'eval_Micro Precision': 0.7281031703385277,
'eval_Macro Precision': 0.732869407033253,
'eval_runtime': 83.3066,
'eval_samples_per_second': 22.339,
'eval_steps_per_second': 0.708,
'epoch': 9.98}
Model description
This model predicts the emotion of the person speaking in the audio sample.
For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/tree/main/Audio-Projects/Emotion%20Detection/Speech%20Emotion%20Detection
Training and evaluation data
Dataset Source: https://www.kaggle.com/datasets/dmitrybabko/speech-emotion-recognition-en
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.