Edit model card

distilhubert-ko-zeroth

This model is a fine-tuned version of ntu-spml/distilhubert on the BINGSU/ZEROTH-KOREAN - NA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9934
  • Cer: 0.2066

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
No log 0.57 400 3.2681 0.6761
7.285 1.15 800 1.5312 0.4170
1.259 1.72 1200 1.3459 0.3846
0.9108 2.3 1600 1.1357 0.3239
0.7227 2.87 2000 1.0571 0.3056
0.7227 3.45 2400 1.0002 0.2829
0.5689 4.02 2800 0.8773 0.2553
0.4676 4.6 3200 0.8634 0.2462
0.3805 5.17 3600 0.8504 0.2323
0.2548 5.75 4000 0.8480 0.2260
0.2548 6.32 4400 0.8550 0.2231
0.189 6.9 4800 0.8587 0.2159
0.1336 7.47 5200 0.9012 0.2101
0.0827 8.05 5600 0.9302 0.2100
0.0506 8.62 6000 0.9622 0.2063
0.0506 9.2 6400 0.9826 0.2062
0.0389 9.77 6800 0.9933 0.2067

Framework versions

  • Transformers 4.21.1
  • Pytorch 1.12.1
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
17
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.