wav2vec2-Malayalam / README.md
Bluecast's picture
wav2vec2-Malayalam
dcfd26c verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: wav2vec2-Malayalam
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: ml
          split: None
          args: ml
        metrics:
          - name: Wer
            type: wer
            value: 0.908768536428111

wav2vec2-Malayalam

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7479
  • Wer: 0.9088

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
8.6036 1.5748 100 6.5081 1.0
3.5056 3.1496 200 3.5634 1.0
3.4952 4.7244 300 3.4927 1.0
3.3772 6.2992 400 3.3696 1.0
3.1849 7.8740 500 3.1735 1.0
1.3056 9.4488 600 1.2938 1.1167
0.8162 11.0236 700 0.8301 1.0190
0.6022 12.5984 800 0.7678 0.9929
0.454 14.1732 900 0.7514 0.9832
0.4104 15.7480 1000 0.7168 0.9452
0.3616 17.3228 1100 0.7297 0.9571
0.2951 18.8976 1200 0.6925 0.9555
0.2667 20.4724 1300 0.7254 0.9400
0.2707 22.0472 1400 0.7498 0.9101
0.2263 23.6220 1500 0.7093 0.9120
0.1933 25.1969 1600 0.7396 0.9091
0.2168 26.7717 1700 0.7417 0.9046
0.2112 28.3465 1800 0.7479 0.9088

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1.dev0
  • Tokenizers 0.19.1