Caramelo_7B / README.md
leaderboard-pt-pr-bot's picture
Fixing some errors of the leaderboard evaluation results in the ModelCard yaml
f348add verified
|
raw
history blame
8.76 kB
metadata
language:
  - pt
  - en
library_name: adapter-transformers
datasets:
  - dominguesm/alpaca-data-pt-br
pipeline_tag: text-generation
thumbnail: >-
  https://blog.cobasi.com.br/wp-content/uploads/2022/08/AdobeStock_461738919.webp
model-index:
  - name: Caramelo_7B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: ENEM Challenge (No Images)
          type: eduagarcia/enem_challenge
          split: train
          args:
            num_few_shot: 3
        metrics:
          - type: acc
            value: 19.8
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=Bruno/Caramelo_7B
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BLUEX (No Images)
          type: eduagarcia-temp/BLUEX_without_images
          split: train
          args:
            num_few_shot: 3
        metrics:
          - type: acc
            value: 24.48
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=Bruno/Caramelo_7B
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: OAB Exams
          type: eduagarcia/oab_exams
          split: train
          args:
            num_few_shot: 3
        metrics:
          - type: acc
            value: 25.28
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=Bruno/Caramelo_7B
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Assin2 RTE
          type: assin2
          split: test
          args:
            num_few_shot: 15
        metrics:
          - type: f1_macro
            value: 54.27
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=Bruno/Caramelo_7B
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Assin2 STS
          type: eduagarcia/portuguese_benchmark
          split: test
          args:
            num_few_shot: 15
        metrics:
          - type: pearson
            value: 7.47
            name: pearson
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=Bruno/Caramelo_7B
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: FaQuAD NLI
          type: ruanchaves/faquad-nli
          split: test
          args:
            num_few_shot: 15
        metrics:
          - type: f1_macro
            value: 43.97
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=Bruno/Caramelo_7B
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HateBR Binary
          type: ruanchaves/hatebr
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: f1_macro
            value: 33.65
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=Bruno/Caramelo_7B
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: PT Hate Speech Binary
          type: hate_speech_portuguese
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: f1_macro
            value: 41.23
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=Bruno/Caramelo_7B
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: tweetSentBR
          type: eduagarcia-temp/tweetsentbr
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: f1_macro
            value: 35.37
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=Bruno/Caramelo_7B
          name: Open Portuguese LLM Leaderboard
Caramelo

CARAMELO

Adapter Description

This adapter was created with the PEFT library and allowed the base model Falcon-7b to be fine-tuned on the https://huggingface.co/datasets/dominguesm/alpaca-data-pt-br by using the method QLoRA.

Model description

Falcon 7B

Intended uses & limitations

TBA

Training and evaluation data

TBA

Training results

How to use

from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, GenerationConfig

peft_model_id = "Bruno/Caramelo_7B"

config = PeftConfig.from_pretrained(peft_model_id)
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.float16,
)

tokenizer = AutoTokenizer.from_pretrained(peft_model_id)

model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path,
                                             return_dict=True,
                                             quantization_config=bnb_config, 
                                             trust_remote_code=True, 
                                             device_map={"": 0})
prompt_input = "Abaixo está uma declaração que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que conclua corretamente a solicitação.\n\n ### Instrução:\n{instruction}\n\n### Entrada:\n{input}\n\n### Resposta:\n"
prompt_no_input = "Abaixo está uma instrução que descreve uma tarefa. Escreva uma resposta que conclua corretamente a solicitação.\n\n### Instrução:\n{instruction}\n\n### Resposta:\n"

def create_prompt(instruction, input=None):
    if input:
        return prompt_input.format(instruction=instruction, input=input)
    else:
        return prompt_no_input.format(instruction=instruction)

def generate(
        instruction,
        input=None,
        max_new_tokens=128,
        temperature=0.1,
        top_p=0.75,
        top_k=40,
        num_beams=4,
        repetition_penalty=1.5,
        max_length=512
):
    prompt = create_prompt(instruction, input)
    inputs = tokenizer.encode_plus(prompt, return_tensors="pt", truncation=True, max_length=max_length, padding="longest")
    input_ids = inputs["input_ids"].to("cuda")
    attention_mask = inputs["attention_mask"].to("cuda")

    generation_output = model.generate(
        input_ids=input_ids,
        attention_mask=attention_mask,
        max_length=max_length,
        pad_token_id=tokenizer.pad_token_id,
        eos_token_id=tokenizer.eos_token_id,
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        num_beams=num_beams,
        repetition_penalty=repetition_penalty,
        length_penalty=0.8,
        early_stopping=True,
        output_scores=True,
        return_dict_in_generate=True
    )

    output = tokenizer.decode(generation_output.sequences[0], skip_special_tokens=True)
    return output.split("### Resposta:")[1]
    
instruction = "como faço um bolo de cenoura?"
print(Instrução:", instruction)
print("Resposta:", generate(instruction))



### Saída

Instrução: como faço um bolo de cenoura?
Resposta: 

1. Pegue uma cenoura e corte-a em pedaços pequenos.
2. Coloque os pedaços de cenoura em uma panela e cozinhe por 10 minutos.
3. Retire a cenoura da panela e deixe-a esfriar.
4. Coloque a cenoura em uma bolsa de plástico e congele.
5. Quando precisar, coloque a cenoura congelada na máquina de bolo.

### Framework versions

- Transformers 4.30.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3

# [Open Portuguese LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/Bruno/Caramelo_7B)

|          Metric          |  Value  |
|--------------------------|---------|
|Average                   |**31.73**|
|ENEM Challenge (No Images)|    19.80|
|BLUEX (No Images)         |    24.48|
|OAB Exams                 |    25.28|
|Assin2 RTE                |    54.27|
|Assin2 STS                |     7.47|
|FaQuAD NLI                |    43.97|
|HateBR Binary             |    33.65|
|PT Hate Speech Binary     |    41.23|
|tweetSentBR               |    35.37|