Edit model card

canine_2303

This model is a fine-tuned version of google/canine-s on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0001
  • Precision: 0.9987
  • Recall: 0.9982
  • F1: 0.9985
  • Accuracy: 0.9999

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 244 0.0025 0.9819 0.9924 0.9871 0.9993
No log 2.0 488 0.0018 0.9855 0.9925 0.9890 0.9995
0.0382 3.0 732 0.0014 0.9923 0.9891 0.9907 0.9996
0.0382 4.0 976 0.0009 0.9930 0.9931 0.9931 0.9997
0.0017 5.0 1220 0.0009 0.9922 0.9949 0.9936 0.9997
0.0017 6.0 1464 0.0007 0.9940 0.9952 0.9946 0.9998
0.0012 7.0 1708 0.0005 0.9947 0.9952 0.9949 0.9998
0.0012 8.0 1952 0.0005 0.9947 0.9955 0.9951 0.9998
0.0009 9.0 2196 0.0003 0.9959 0.9960 0.9959 0.9998
0.0009 10.0 2440 0.0003 0.9958 0.9963 0.9961 0.9998
0.0007 11.0 2684 0.0003 0.9971 0.9958 0.9965 0.9999
0.0007 12.0 2928 0.0003 0.9971 0.9962 0.9967 0.9999
0.0005 13.0 3172 0.0002 0.9974 0.9967 0.9971 0.9999
0.0005 14.0 3416 0.0002 0.9980 0.9972 0.9976 0.9999
0.0004 15.0 3660 0.0002 0.9982 0.9980 0.9981 0.9999
0.0004 16.0 3904 0.0002 0.9984 0.9974 0.9979 0.9999
0.0004 17.0 4148 0.0001 0.9984 0.9975 0.9979 0.9999
0.0004 18.0 4392 0.0001 0.9988 0.9982 0.9985 0.9999
0.0003 19.0 4636 0.0001 0.9987 0.9982 0.9985 0.9999
0.0003 20.0 4880 0.0001 0.9987 0.9982 0.9985 0.9999

Framework versions

  • Transformers 4.27.2
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
650
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.