Edit model card

canine_deasciifier_0205

This model is a fine-tuned version of google/canine-s on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0004
  • Precision: 0.9983
  • Recall: 0.9991
  • F1: 0.9987
  • Accuracy: 0.9999

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 244 0.0462 0.8117 0.8638 0.8370 0.9829
No log 2.0 488 0.0335 0.8432 0.9286 0.8838 0.9878
0.1144 3.0 732 0.0173 0.9182 0.9569 0.9371 0.9939
0.1144 4.0 976 0.0101 0.9567 0.9705 0.9636 0.9966
0.0241 5.0 1220 0.0067 0.9716 0.9786 0.9751 0.9978
0.0241 6.0 1464 0.0049 0.9784 0.9846 0.9815 0.9984
0.0137 7.0 1708 0.0039 0.9830 0.9886 0.9858 0.9987
0.0137 8.0 1952 0.0030 0.9870 0.9911 0.9891 0.9990
0.0088 9.0 2196 0.0024 0.9893 0.9933 0.9913 0.9992
0.0088 10.0 2440 0.0019 0.9916 0.9947 0.9932 0.9994
0.0061 11.0 2684 0.0013 0.9941 0.9962 0.9952 0.9996
0.0061 12.0 2928 0.0010 0.9955 0.9971 0.9963 0.9997
0.0045 13.0 3172 0.0010 0.9952 0.9973 0.9963 0.9997
0.0045 14.0 3416 0.0008 0.9966 0.9980 0.9973 0.9998
0.0033 15.0 3660 0.0006 0.9973 0.9982 0.9978 0.9998
0.0033 16.0 3904 0.0006 0.9975 0.9986 0.9980 0.9998
0.0027 17.0 4148 0.0004 0.9982 0.9988 0.9985 0.9999
0.0027 18.0 4392 0.0004 0.9982 0.9990 0.9986 0.9999
0.0023 19.0 4636 0.0004 0.9984 0.9991 0.9988 0.9999
0.0023 20.0 4880 0.0004 0.9983 0.9991 0.9987 0.9999

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.