Edit model card

canine_vowelizer_0701

This model is a fine-tuned version of google/canine-s on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0273
  • Precision: 0.9999
  • Recall: 1.0000
  • F1: 1.0000
  • Accuracy: 0.9905

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.521 1.0 1951 0.4233 0.9998 0.9999 0.9998 0.8544
0.3948 2.0 3902 0.3227 0.9998 1.0000 0.9999 0.8899
0.3353 3.0 5853 0.2592 0.9999 1.0000 0.9999 0.9116
0.2907 4.0 7804 0.2172 0.9999 0.9999 0.9999 0.9253
0.2503 5.0 9755 0.1823 0.9999 1.0000 0.9999 0.9363
0.2251 6.0 11706 0.1530 0.9999 1.0000 0.9999 0.9460
0.2001 7.0 13657 0.1299 0.9999 1.0000 0.9999 0.9540
0.1757 8.0 15608 0.1081 0.9999 1.0000 0.9999 0.9613
0.1602 9.0 17559 0.0936 0.9999 1.0000 0.9999 0.9665
0.1473 10.0 19510 0.0802 0.9999 1.0000 0.9999 0.9712
0.1319 11.0 21461 0.0700 0.9999 1.0000 1.0000 0.9748
0.1169 12.0 23412 0.0602 0.9999 1.0000 0.9999 0.9783
0.1071 13.0 25363 0.0518 0.9999 1.0000 0.9999 0.9815
0.0985 14.0 27314 0.0455 0.9999 1.0000 1.0000 0.9838
0.0918 15.0 29265 0.0402 0.9999 1.0000 1.0000 0.9859
0.0848 16.0 31216 0.0362 0.9999 1.0000 1.0000 0.9871
0.079 17.0 33167 0.0323 0.9999 1.0000 1.0000 0.9888
0.0728 18.0 35118 0.0295 0.9999 1.0000 1.0000 0.9897
0.0716 19.0 37069 0.0278 0.9999 1.0000 1.0000 0.9904
0.0686 20.0 39020 0.0273 0.9999 1.0000 1.0000 0.9905

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.13.3
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.