Buseak's picture
update model card README.md
acc5dcd
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: canine_vowelizer_0706_v4
    results: []

canine_vowelizer_0706_v4

This model is a fine-tuned version of google/canine-s on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1450
  • Precision: 1.0000
  • Recall: 1.0
  • F1: 1.0000
  • Accuracy: 0.9775

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1088 1.0 1951 0.1144 0.9999 1.0 1.0000 0.9628
0.1009 2.0 3902 0.1023 0.9999 1.0 1.0000 0.9657
0.0917 3.0 5853 0.0985 1.0000 1.0 1.0000 0.9690
0.0757 4.0 7804 0.0928 1.0000 1.0000 1.0000 0.9712
0.0635 5.0 9755 0.0932 0.9999 1.0 1.0000 0.9725
0.0542 6.0 11706 0.0943 0.9999 1.0000 1.0000 0.9735
0.0453 7.0 13657 0.0980 1.0000 1.0000 1.0000 0.9738
0.0369 8.0 15608 0.1037 1.0000 1.0 1.0000 0.9750
0.0308 9.0 17559 0.1056 1.0000 1.0000 1.0000 0.9747
0.0275 10.0 19510 0.1138 1.0000 1.0 1.0000 0.9757
0.0222 11.0 21461 0.1187 1.0000 1.0 1.0000 0.9757
0.0185 12.0 23412 0.1201 1.0000 1.0000 1.0000 0.9761
0.0166 13.0 25363 0.1239 1.0000 1.0000 1.0000 0.9764
0.0146 14.0 27314 0.1302 1.0000 1.0 1.0000 0.9768
0.0112 15.0 29265 0.1351 1.0000 1.0000 1.0000 0.9768
0.0104 16.0 31216 0.1386 1.0000 1.0 1.0000 0.9769
0.0092 17.0 33167 0.1379 1.0000 1.0 1.0000 0.9771
0.0079 18.0 35118 0.1453 1.0000 1.0 1.0000 0.9771
0.0071 19.0 37069 0.1444 1.0000 1.0 1.0000 0.9775
0.0067 20.0 39020 0.1450 1.0000 1.0 1.0000 0.9775

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.0
  • Tokenizers 0.13.3