Edit model card

canine_vowelizer_2105_v6

This model is a fine-tuned version of google/canine-s on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1704
  • Precision: 0.9998
  • Recall: 0.9998
  • F1: 0.9998
  • Accuracy: 0.9391

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.4826 1.0 3885 0.4310 0.9997 0.9998 0.9997 0.8467
0.4118 2.0 7770 0.3556 0.9997 0.9998 0.9997 0.8748
0.369 3.0 11655 0.3126 0.9997 0.9998 0.9997 0.8893
0.339 4.0 15540 0.2811 0.9997 0.9998 0.9998 0.9014
0.3192 5.0 19425 0.2589 0.9997 0.9998 0.9998 0.9095
0.3052 6.0 23310 0.2399 0.9997 0.9998 0.9998 0.9157
0.281 7.0 27195 0.2252 0.9997 0.9998 0.9998 0.9207
0.2749 8.0 31080 0.2117 0.9998 0.9998 0.9998 0.9248
0.2589 9.0 34965 0.2011 0.9998 0.9998 0.9998 0.9285
0.253 10.0 38850 0.1940 0.9998 0.9998 0.9998 0.9314
0.2428 11.0 42735 0.1842 0.9998 0.9998 0.9998 0.9348
0.2433 12.0 46620 0.1783 0.9998 0.9998 0.9998 0.9365
0.2265 13.0 50505 0.1751 0.9998 0.9998 0.9998 0.9375
0.2244 14.0 54390 0.1721 0.9998 0.9998 0.9998 0.9387
0.2203 15.0 58275 0.1704 0.9998 0.9998 0.9998 0.9391

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.