Buseak's picture
End of training
8d9b805
metadata
license: apache-2.0
base_model: google/canine-s
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: sentence_splitter_final_v2
    results: []

sentence_splitter_final_v2

This model is a fine-tuned version of google/canine-s on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000
  • Precision: 0.8
  • Recall: 1.0
  • F1: 0.8889
  • Accuracy: 1.0000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 95 0.0037 0.0690 0.5 0.1212 0.9988
No log 2.0 190 0.0022 0.0909 1.0 0.1667 0.9993
No log 3.0 285 0.0014 0.1333 1.0 0.2353 0.9995
No log 4.0 380 0.0010 0.1905 1.0 0.32 0.9996
No log 5.0 475 0.0008 0.25 1.0 0.4 0.9997
0.0096 6.0 570 0.0004 0.3636 1.0 0.5333 0.9998
0.0096 7.0 665 0.0004 0.2222 1.0 0.3636 0.9999
0.0096 8.0 760 0.0002 0.4 1.0 0.5714 0.9999
0.0096 9.0 855 0.0003 0.1905 1.0 0.32 0.9999
0.0096 10.0 950 0.0003 0.2105 1.0 0.3478 0.9999
0.0008 11.0 1045 0.0001 0.3333 1.0 0.5 1.0000
0.0008 12.0 1140 0.0001 0.5 1.0 0.6667 1.0000
0.0008 13.0 1235 0.0001 0.4444 1.0 0.6154 1.0000
0.0008 14.0 1330 0.0000 0.8 1.0 0.8889 1.0000
0.0008 15.0 1425 0.0000 0.6667 1.0 0.8 1.0000
0.0003 16.0 1520 0.0000 0.8 1.0 0.8889 1.0000
0.0003 17.0 1615 0.0000 0.8 1.0 0.8889 1.0000
0.0003 18.0 1710 0.0000 0.8 1.0 0.8889 1.0000
0.0003 19.0 1805 0.0000 0.8 1.0 0.8889 1.0000
0.0003 20.0 1900 0.0000 0.8 1.0 0.8889 1.0000
0.0003 21.0 1995 0.0000 0.8 1.0 0.8889 1.0000
0.0001 22.0 2090 0.0000 0.8 1.0 0.8889 1.0000
0.0001 23.0 2185 0.0000 0.8 1.0 0.8889 1.0000
0.0001 24.0 2280 0.0000 0.8 1.0 0.8889 1.0000
0.0001 25.0 2375 0.0000 0.8 1.0 0.8889 1.0000

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0