Buseak's picture
End of training
70a4802
metadata
license: apache-2.0
base_model: google/canine-s
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: spellcorrector_0511_v3_30_epoch
    results: []

spellcorrector_0511_v3_30_epoch

This model is a fine-tuned version of google/canine-s on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1888
  • Precision: 0.9708
  • Recall: 0.9751
  • F1: 0.9730
  • Accuracy: 0.9745

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2233 1.0 1945 0.1721 0.9292 0.9619 0.9453 0.9570
0.1589 2.0 3890 0.1346 0.9455 0.9670 0.9561 0.9646
0.1387 3.0 5835 0.1208 0.9545 0.9684 0.9614 0.9680
0.1201 4.0 7780 0.1173 0.9620 0.9616 0.9618 0.9682
0.1067 5.0 9725 0.1138 0.9628 0.9662 0.9645 0.9699
0.0951 6.0 11670 0.1096 0.9653 0.9680 0.9666 0.9714
0.0864 7.0 13615 0.1122 0.9673 0.9663 0.9668 0.9715
0.0757 8.0 15560 0.1141 0.9680 0.9699 0.9689 0.9719
0.0676 9.0 17505 0.1154 0.9687 0.9718 0.9703 0.9723
0.0606 10.0 19450 0.1193 0.9679 0.9730 0.9705 0.9731
0.0548 11.0 21395 0.1246 0.9701 0.9696 0.9698 0.9724
0.0478 12.0 23340 0.1279 0.9708 0.9705 0.9706 0.9730
0.0417 13.0 25285 0.1316 0.9707 0.9706 0.9706 0.9733
0.0375 14.0 27230 0.1387 0.9706 0.9734 0.9720 0.9729
0.0334 15.0 29175 0.1405 0.9704 0.9748 0.9726 0.9741
0.0292 16.0 31120 0.1450 0.9704 0.9736 0.9720 0.9733
0.0261 17.0 33065 0.1492 0.9684 0.9744 0.9714 0.9734
0.0233 18.0 35010 0.1529 0.9701 0.9755 0.9728 0.9739
0.0205 19.0 36955 0.1580 0.9708 0.9733 0.9720 0.9735
0.0174 20.0 38900 0.1636 0.9710 0.9749 0.9729 0.9741
0.0166 21.0 40845 0.1674 0.9700 0.9763 0.9732 0.9742
0.0142 22.0 42790 0.1729 0.9706 0.9742 0.9724 0.9733
0.0126 23.0 44735 0.1737 0.9711 0.9742 0.9726 0.9743
0.0116 24.0 46680 0.1788 0.9706 0.9762 0.9734 0.9747
0.0102 25.0 48625 0.1808 0.9712 0.9750 0.9731 0.9745
0.0093 26.0 50570 0.1817 0.9710 0.9741 0.9725 0.9742
0.0082 27.0 52515 0.1838 0.9706 0.9748 0.9727 0.9741
0.0082 28.0 54460 0.1865 0.9711 0.9754 0.9733 0.9745
0.0076 29.0 56405 0.1873 0.9706 0.9753 0.9729 0.9745
0.0069 30.0 58350 0.1888 0.9708 0.9751 0.9730 0.9745

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1