Buseak's picture
update model card README.md
588bdad
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: spellcorrector_1209_v5
    results: []

spellcorrector_1209_v5

This model is a fine-tuned version of google/canine-s on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0129
  • Precision: 0.9884
  • Recall: 0.9845
  • F1: 0.9865
  • Accuracy: 0.9958

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2592 1.0 1951 0.1973 0.7990 0.7403 0.7686 0.9462
0.2036 2.0 3902 0.1430 0.8304 0.7969 0.8133 0.9591
0.1643 3.0 5853 0.1090 0.8775 0.8292 0.8527 0.9688
0.1339 4.0 7804 0.0898 0.8971 0.8539 0.8750 0.9743
0.1143 5.0 9755 0.0788 0.9104 0.8768 0.8933 0.9773
0.0996 6.0 11706 0.0648 0.9240 0.8929 0.9082 0.9810
0.0874 7.0 13657 0.0568 0.9349 0.9035 0.9189 0.9829
0.0797 8.0 15608 0.0496 0.9439 0.9215 0.9326 0.9851
0.0696 9.0 17559 0.0426 0.9538 0.9289 0.9412 0.9868
0.0647 10.0 19510 0.0385 0.9596 0.9372 0.9482 0.9880
0.0532 11.0 21461 0.0335 0.9636 0.9465 0.9550 0.9895
0.0481 12.0 23412 0.0298 0.9704 0.9570 0.9636 0.9907
0.0443 13.0 25363 0.0240 0.9745 0.9654 0.9699 0.9923
0.0414 14.0 27314 0.0229 0.9795 0.9671 0.9732 0.9926
0.0369 15.0 29265 0.0195 0.9809 0.9737 0.9773 0.9938
0.0339 16.0 31216 0.0171 0.9831 0.9778 0.9805 0.9944
0.0312 17.0 33167 0.0156 0.9859 0.9797 0.9828 0.9949
0.0276 18.0 35118 0.0140 0.9874 0.9821 0.9847 0.9954
0.0277 19.0 37069 0.0133 0.9880 0.9840 0.9860 0.9957
0.0253 20.0 39020 0.0129 0.9884 0.9845 0.9865 0.9958

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3