|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: spellcorrector_1709_v7 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# spellcorrector_1709_v7 |
|
|
|
This model is a fine-tuned version of [google/canine-s](https://huggingface.co/google/canine-s) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0885 |
|
- Precision: 0.9610 |
|
- Recall: 0.9739 |
|
- F1: 0.9674 |
|
- Accuracy: 0.9742 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.2583 | 1.0 | 1951 | 0.2210 | 0.8849 | 0.9710 | 0.9260 | 0.9443 | |
|
| 0.2244 | 2.0 | 3902 | 0.1992 | 0.8954 | 0.9685 | 0.9305 | 0.9466 | |
|
| 0.2099 | 3.0 | 5853 | 0.1868 | 0.9021 | 0.9684 | 0.9341 | 0.9482 | |
|
| 0.1989 | 4.0 | 7804 | 0.1789 | 0.9109 | 0.9634 | 0.9364 | 0.9500 | |
|
| 0.1926 | 5.0 | 9755 | 0.1694 | 0.9141 | 0.9652 | 0.9389 | 0.9518 | |
|
| 0.1837 | 6.0 | 11706 | 0.1605 | 0.9160 | 0.9697 | 0.9421 | 0.9540 | |
|
| 0.1817 | 7.0 | 13657 | 0.1547 | 0.9209 | 0.9656 | 0.9427 | 0.9549 | |
|
| 0.1723 | 8.0 | 15608 | 0.1484 | 0.9226 | 0.9687 | 0.9451 | 0.9564 | |
|
| 0.1692 | 9.0 | 17559 | 0.1442 | 0.9269 | 0.9649 | 0.9455 | 0.9571 | |
|
| 0.1642 | 10.0 | 19510 | 0.1386 | 0.9269 | 0.9697 | 0.9478 | 0.9587 | |
|
| 0.1578 | 11.0 | 21461 | 0.1327 | 0.9310 | 0.9693 | 0.9497 | 0.9600 | |
|
| 0.148 | 12.0 | 23412 | 0.1231 | 0.9393 | 0.9674 | 0.9532 | 0.9630 | |
|
| 0.1455 | 13.0 | 25363 | 0.1172 | 0.9413 | 0.9711 | 0.9560 | 0.9653 | |
|
| 0.1402 | 14.0 | 27314 | 0.1123 | 0.9476 | 0.9673 | 0.9573 | 0.9662 | |
|
| 0.1323 | 15.0 | 29265 | 0.1056 | 0.9511 | 0.9694 | 0.9602 | 0.9685 | |
|
| 0.1269 | 16.0 | 31216 | 0.0989 | 0.9521 | 0.9740 | 0.9629 | 0.9709 | |
|
| 0.1225 | 17.0 | 33167 | 0.0953 | 0.9575 | 0.9716 | 0.9645 | 0.9720 | |
|
| 0.1186 | 18.0 | 35118 | 0.0907 | 0.9582 | 0.9744 | 0.9662 | 0.9735 | |
|
| 0.1169 | 19.0 | 37069 | 0.0897 | 0.9606 | 0.9734 | 0.9670 | 0.9738 | |
|
| 0.113 | 20.0 | 39020 | 0.0885 | 0.9610 | 0.9739 | 0.9674 | 0.9742 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|