File size: 4,217 Bytes
2426919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: spellcorrector_2610_v16_canine-s
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# spellcorrector_2610_v16_canine-s

This model is a fine-tuned version of [google/canine-s](https://huggingface.co/google/canine-s) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0974
- Precision: 0.9789
- Recall: 0.9829
- F1: 0.9809
- Accuracy: 0.9838

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.252         | 1.0   | 976   | 0.1462          | 0.9386    | 0.9800 | 0.9589 | 0.9702   |
| 0.1463        | 2.0   | 1952  | 0.1256          | 0.9479    | 0.9794 | 0.9634 | 0.9721   |
| 0.1266        | 3.0   | 2928  | 0.1049          | 0.9578    | 0.9769 | 0.9673 | 0.9745   |
| 0.1081        | 4.0   | 3904  | 0.0938          | 0.9634    | 0.9787 | 0.9710 | 0.9772   |
| 0.0963        | 5.0   | 4880  | 0.0856          | 0.9663    | 0.9793 | 0.9727 | 0.9788   |
| 0.0863        | 6.0   | 5856  | 0.0838          | 0.9705    | 0.9759 | 0.9732 | 0.9786   |
| 0.077         | 7.0   | 6832  | 0.0804          | 0.9734    | 0.9757 | 0.9745 | 0.9797   |
| 0.0713        | 8.0   | 7808  | 0.0779          | 0.9726    | 0.9804 | 0.9765 | 0.9809   |
| 0.066         | 9.0   | 8784  | 0.0794          | 0.9749    | 0.9767 | 0.9758 | 0.9801   |
| 0.0602        | 10.0  | 9760  | 0.0748          | 0.9741    | 0.9823 | 0.9782 | 0.9821   |
| 0.0555        | 11.0  | 10736 | 0.0763          | 0.9750    | 0.9815 | 0.9782 | 0.9822   |
| 0.0512        | 12.0  | 11712 | 0.0764          | 0.9769    | 0.9800 | 0.9784 | 0.9823   |
| 0.048         | 13.0  | 12688 | 0.0767          | 0.9769    | 0.9822 | 0.9796 | 0.9832   |
| 0.0453        | 14.0  | 13664 | 0.0793          | 0.9767    | 0.9819 | 0.9793 | 0.9829   |
| 0.0412        | 15.0  | 14640 | 0.0809          | 0.9774    | 0.9822 | 0.9798 | 0.9832   |
| 0.0384        | 16.0  | 15616 | 0.0796          | 0.9765    | 0.9830 | 0.9798 | 0.9831   |
| 0.0364        | 17.0  | 16592 | 0.0830          | 0.9779    | 0.9825 | 0.9802 | 0.9833   |
| 0.0344        | 18.0  | 17568 | 0.0834          | 0.9779    | 0.9819 | 0.9799 | 0.9831   |
| 0.0307        | 19.0  | 18544 | 0.0857          | 0.9777    | 0.9823 | 0.9800 | 0.9832   |
| 0.0283        | 20.0  | 19520 | 0.0869          | 0.9776    | 0.9819 | 0.9797 | 0.9832   |
| 0.0269        | 21.0  | 20496 | 0.0885          | 0.9781    | 0.9822 | 0.9802 | 0.9833   |
| 0.0252        | 22.0  | 21472 | 0.0906          | 0.9784    | 0.9814 | 0.9799 | 0.9833   |
| 0.0229        | 23.0  | 22448 | 0.0932          | 0.9785    | 0.9820 | 0.9802 | 0.9833   |
| 0.0223        | 24.0  | 23424 | 0.0910          | 0.9785    | 0.9832 | 0.9809 | 0.9835   |
| 0.0209        | 25.0  | 24400 | 0.0936          | 0.9787    | 0.9824 | 0.9805 | 0.9836   |
| 0.0199        | 26.0  | 25376 | 0.0948          | 0.9791    | 0.9823 | 0.9807 | 0.9838   |
| 0.0189        | 27.0  | 26352 | 0.0961          | 0.9792    | 0.9828 | 0.9810 | 0.9838   |
| 0.0184        | 28.0  | 27328 | 0.0965          | 0.9786    | 0.9834 | 0.9810 | 0.9840   |
| 0.0178        | 29.0  | 28304 | 0.0970          | 0.9789    | 0.9829 | 0.9809 | 0.9838   |
| 0.0174        | 30.0  | 29280 | 0.0974          | 0.9789    | 0.9829 | 0.9809 | 0.9838   |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.13.3