Edit model card

spellcorrector_710_v8

This model is a fine-tuned version of google/canine-s on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0144
  • Precision: 0.9961
  • Recall: 0.9962
  • F1: 0.9962
  • Accuracy: 0.9957

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2237 1.0 1951 0.1844 0.9061 0.9700 0.9370 0.9557
0.1882 2.0 3902 0.1577 0.9144 0.9719 0.9423 0.9598
0.1669 3.0 5853 0.1389 0.9311 0.9689 0.9497 0.9633
0.154 4.0 7804 0.1234 0.9343 0.9751 0.9543 0.9669
0.141 5.0 9755 0.1076 0.9480 0.9734 0.9605 0.9711
0.1286 6.0 11706 0.0959 0.9584 0.9746 0.9664 0.9747
0.1131 7.0 13657 0.0799 0.9624 0.9792 0.9708 0.9780
0.1016 8.0 15608 0.0714 0.9696 0.9801 0.9748 0.9805
0.0915 9.0 17559 0.0627 0.9737 0.9821 0.9779 0.9825
0.0839 10.0 19510 0.0574 0.9781 0.9830 0.9806 0.9839
0.0761 11.0 21461 0.0500 0.9808 0.9849 0.9828 0.9858
0.069 12.0 23412 0.0437 0.9807 0.9887 0.9847 0.9873
0.0644 13.0 25363 0.0404 0.9849 0.9882 0.9866 0.9882
0.057 14.0 27314 0.0371 0.9871 0.9892 0.9881 0.9892
0.0555 15.0 29265 0.0343 0.9890 0.9895 0.9893 0.9900
0.0512 16.0 31216 0.0288 0.9899 0.9919 0.9909 0.9914
0.0464 17.0 33167 0.0265 0.9914 0.9922 0.9918 0.9920
0.0424 18.0 35118 0.0234 0.9924 0.9937 0.9931 0.9929
0.0391 19.0 37069 0.0215 0.9940 0.9936 0.9938 0.9936
0.0375 20.0 39020 0.0195 0.9944 0.9944 0.9944 0.9942
0.0344 21.0 40971 0.0178 0.9952 0.9949 0.9950 0.9947
0.032 22.0 42922 0.0160 0.9955 0.9957 0.9956 0.9952
0.0299 23.0 44873 0.0153 0.9957 0.9960 0.9958 0.9954
0.0291 24.0 46824 0.0145 0.9961 0.9961 0.9961 0.9957
0.0289 25.0 48775 0.0144 0.9961 0.9962 0.9962 0.9957

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.