Edit model card

spellcorrector_910_v13_autoregressive

This model is a fine-tuned version of google/canine-c on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0170
  • Precision: 0.9963
  • Recall: 0.9957
  • F1: 0.9960
  • Accuracy: 0.9953

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2531 1.0 1951 0.2224 0.9056 0.9748 0.9389 0.9590
0.208 2.0 3902 0.1857 0.9143 0.9734 0.9429 0.9613
0.1784 3.0 5853 0.1583 0.9213 0.9743 0.9470 0.9637
0.1604 4.0 7804 0.1380 0.9310 0.9735 0.9517 0.9662
0.1468 5.0 9755 0.1190 0.9399 0.9765 0.9579 0.9698
0.1301 6.0 11706 0.1028 0.9540 0.9744 0.9641 0.9737
0.1157 7.0 13657 0.0841 0.9610 0.9788 0.9698 0.9782
0.101 8.0 15608 0.0762 0.9702 0.9764 0.9733 0.9800
0.0892 9.0 17559 0.0621 0.9738 0.9823 0.9780 0.9835
0.0797 10.0 19510 0.0539 0.9756 0.9855 0.9805 0.9855
0.0734 11.0 21461 0.0490 0.9802 0.9848 0.9825 0.9868
0.0647 12.0 23412 0.0428 0.9826 0.9871 0.9849 0.9882
0.0606 13.0 25363 0.0400 0.9856 0.9871 0.9863 0.9890
0.0556 14.0 27314 0.0356 0.9874 0.9881 0.9877 0.9900
0.0506 15.0 29265 0.0334 0.9891 0.9896 0.9893 0.9907
0.0471 16.0 31216 0.0292 0.9902 0.9910 0.9906 0.9917
0.0442 17.0 33167 0.0270 0.9913 0.9915 0.9914 0.9923
0.0406 18.0 35118 0.0246 0.9924 0.9931 0.9928 0.9931
0.0383 19.0 37069 0.0230 0.9935 0.9935 0.9935 0.9936
0.0354 20.0 39020 0.0209 0.9944 0.9942 0.9943 0.9942
0.0337 21.0 40971 0.0204 0.9950 0.9942 0.9946 0.9943
0.0316 22.0 42922 0.0183 0.9956 0.9952 0.9954 0.9949
0.0302 23.0 44873 0.0177 0.9960 0.9954 0.9957 0.9951
0.0297 24.0 46824 0.0171 0.9961 0.9957 0.9959 0.9953
0.0284 25.0 48775 0.0170 0.9963 0.9957 0.9960 0.9953

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.