Edit model card

vowelizer_1203_v4

This model is a fine-tuned version of Buseak/vowelizer_1203_v3 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000
  • Precision: 1.0
  • Recall: 1.0
  • F1: 1.0
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0027 1.0 967 0.0008 0.9995 0.9996 0.9995 0.9998
0.0037 2.0 1934 0.0007 0.9995 0.9995 0.9995 0.9998
0.0034 3.0 2901 0.0005 0.9996 0.9997 0.9996 0.9998
0.0032 4.0 3868 0.0005 0.9995 0.9997 0.9996 0.9998
0.0029 5.0 4835 0.0004 0.9997 0.9998 0.9998 0.9999
0.0027 6.0 5802 0.0003 0.9997 0.9998 0.9998 0.9999
0.0025 7.0 6769 0.0002 0.9998 0.9999 0.9998 0.9999
0.0022 8.0 7736 0.0002 0.9999 0.9999 0.9999 1.0000
0.0021 9.0 8703 0.0001 0.9999 0.9999 0.9999 1.0000
0.002 10.0 9670 0.0001 0.9999 0.9999 0.9999 1.0000
0.0017 11.0 10637 0.0001 0.9999 1.0000 0.9999 1.0000
0.0016 12.0 11604 0.0001 0.9999 1.0000 0.9999 1.0000
0.0013 13.0 12571 0.0000 1.0000 1.0000 1.0000 1.0000
0.0012 14.0 13538 0.0000 1.0000 1.0000 1.0000 1.0000
0.0011 15.0 14505 0.0000 1.0000 1.0000 1.0000 1.0000
0.0009 16.0 15472 0.0000 1.0000 1.0000 1.0000 1.0000
0.0008 17.0 16439 0.0000 1.0 1.0 1.0 1.0000
0.0007 18.0 17406 0.0000 1.0 1.0 1.0 1.0000
0.0008 19.0 18373 0.0000 1.0 1.0 1.0 1.0
0.0009 20.0 19340 0.0000 1.0 1.0 1.0 1.0

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.13.3
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.